17 research outputs found

    Genome-wide identification and expression analysis of GDP-D-mannose pyrophosphorylase and KATANIN in Corymbia citriodora

    Get PDF
    The GDP-D-mannose pyrophosphorylase (GMP) and microtubule severing enzyme KATANIN (KTN) are crucial for wood formation. Although functional identification has been performed in Arabidopsis, few comprehensive studies have been conducted in forest trees. In this study, we discovered 8 CcGMP and 4 CcKTN genes by analyzing the whole genome sequence of Corymbia citriodora. The chromosomal location, genome synteny, phylogenetic relationship, protein domain, motif identification, gene structure, cis-acting regulatory elements, and protein-interaction of CcGMP and CcKTN were all investigated. KTN has just one pair of segmentally duplicated genes, while GMP has no duplication events. According to gene structure, two 5’ UTRs were identified in CcGMP4. Furthermore, there is no protein-interaction between KTN and GMP. Based on real-time PCR, the expression of most genes showed a positive connection with DBH diameters. In addition, the expression of CcGMP4 and CcKTN4 genes were greater in different size tree, indicating that these genes are important in secondary xylem production. Overall, this findings will enhance our comprehension of the intricacy of CcGMP&CcKTN across diverse DBHs and furnish valuable insights for future functional characterization of specific genes in C. citriodora

    Isotemporal substitution effect of 24-hour movement behavior on the mental health of Chinese preschool children

    Get PDF
    The 24-h movement behavior of preschoolers comprises a spectrum of activities, including moderate-to-vigorous intensity physical activity (MVPA), light-intensity physical activity (LPA), screen-based sedentary behavior (SCSB), non-screen-based sedentary behavior (NSCSB), and sleep. While previous research has shed light on the link between movement behaviors and children’s mental health, the specific impacts on the unique demographic of Chinese preschoolers remain underexplored. This study significantly contributes to the literature by exploring how 24-h movement behavior affects the mental health of preschoolers in a Chinese context. The study involved205 Chinese preschool children (117 boys and 88 girls) between the ages of 3 and 6 years wore accelerometers to measure their LPA, MVPA, and sedentary behavior (SB), while their parents reported the time spent on sleep and SCSB. The parents also completed the Strength and Difficulties Questionnaire to assess their children’s mental health. The study used compositional regression and isotemporal substitution models to examine the relationship between the various components of 24-h movement behavior and mental health. The results showed that greater NCSSB compared to MVPA, LPA, sleep, and SCSB was associated with good prosocial behavior and lower scores on externalizing problems. This highlights the potential of NSCSB as a beneficial component in the daily routine of preschoolers for fostering mental well-being. Replacing 15 min of sleep and SCSB with 15 min of NSCSB was associated with a decrease of 0.24 and 0.15 units, respectively, in externalizing problems. Reallocating 15 min of sleep to NSCSB was linked to an increase of 0.11 units in prosocial behavior. There were no significant substitution effects between LPA and MVPA time with any other movement behavior on prosocial behavior and externalizing problems. Given the positive associations observed, further longitudinal studies are necessary to explore the link between 24-h movement behavior and mental health in preschool children

    Genetic Diversity and Structure through Three Cycles of a Eucalyptus urophylla S.T.Blake Breeding Program

    No full text
    Eucalyptus urophylla S.T.Blake is an important commercial tropical plantation species worldwide. In China, a breeding program for this species has progressed through three cycles but genetic diversity and structure in the breeding populations are uncertain. A sampling of field trials from these populations was carried out to evaluate their genetic diversity and structure using 16 microsatellite loci. Significant deviations from Hardy-Weinberg equilibrium were recorded at all 16 loci in the populations. Overall expected and observed heterozygosity (He and Ho) estimates of 0.87 and 0.59 respectively for the first cycle population, and 0.88 and 0.60 respectively for the third cycle population, revealed reasonably high levels of genetic diversity. The genetic differentiation coefficient (Fst) revealed low differentiation among pairs of provenances (from the species’ native range) comprising the first cycle population (range: 0.012–0.108), and AMOVA results showed that the majority of molecular genetic variation existed among individuals rather than among provenances for the first cycle population and among individuals rather than among field trial sources in the third cycle population. Levels of genetic diversity appeared to remain unchanged from the first to third cycle populations, and the results indicate prospects for maintaining if not increasing diversity through recurrent breeding. Likely effects of artificial directional selection, prior to sampling, on both populations examined are discussed along with implications for future E. urophylla breeding

    Expression of DAZL Gene in Selected Tissues and Association of Its Polymorphisms with Testicular Size in Hu Sheep

    No full text
    The deleted in azoospermia-like (DAZL) gene encoding an RNA binding protein is pivotal in gametogenesis in lots of species and also acts as a pre-meiosis marker. The current study was conducted to detect expression profiles and single nucleotide polymorphisms (SNPs) of DAZL in sheep using qPCR, DNA-pooled sequencing, improved multiplex ligase detection reaction (iMLDR®) and restriction fragment length polymorphism (RFLP) methods. The results confirmed that ovine DAZL showed the highest expression level at six-months of age across five developmental stage. At six-month stage, DAZL expressed primarily in testis across seven tissues analyzed. The abundance of DAZL in the large-testis group is higher than that in the small-testis group although it is not significant. In addition, six SNPs (SNP1-SNP6) were identified in DAZL. Of those, SNP1 (p < 0.05) and SNP6 (p < 0.01) were significantly correlated with the variation coefficient between left and right epididymis weight (VCTW). The current study implies DAZL may play important roles in testicular development and its SNPs are associated with testicular parameters, which supply important indicators for ram selection at early stage

    Facile Large-Scale Synthesis of Urea-Derived Porous Graphitic Carbon Nitride with Extraordinary Visible-Light Spectrum Photodegradation

    No full text
    We report the large-scale synthesis of porous graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) in a direct heat treatment process by controlling the thermal condensation temperature of the low-cost urea precursor. An excellent linear relation between the yield of the urea-derived porous g-C<sub>3</sub>N<sub>4</sub> (U-g-C<sub>3</sub>N<sub>4</sub>) and the input urea was experimentally demonstrated, and consequently, a large-scale yield >50 g in a batch was readily achieved. A series of morphology and structure characterizations revealed the actual evolutionary process of the temperature-dependent porous architecture of U-g-C<sub>3</sub>N<sub>4</sub> and its inherent superiority. Furthermore, we demonstrated the extraordinary visible-light-driven photodegradation activity of large-scale U-g-C<sub>3</sub>N<sub>4</sub> toward organic pollutants such as rhodamine B, safranine T, and α-naphthol. Such superior photodegradation performance and long-term photocatalytic stability, together with a scalable preparation method, may render as-fabricated U-g-C<sub>3</sub>N<sub>4</sub> as a promising candidate for practical application in environmental remediation

    ZNF219, a novel transcriptional repressor, inhibits transcription of the prototype foamy virus by interacting with the viral LTR promoter

    No full text
    Prototype foamy virus (PFV) is an ancient retrovirus that infects humans with persistent latent infections and non-pathogenic consequences. Lifelong latent PFV infections can be caused by restrictive factors in the host. However, the molecular mechanisms underlying host cell regulation during PFV infection are not fully understood. The aim of the study was to investigate whether a zinc finger protein (ZFP), ZNF219, as a transcription factor, can regulate the transcriptional activity of the viral promoter. Here, using transcriptome sequencing, we found that ZNF219, is downregulated in PFV infected cells and that ZNF219 suppresses viral replication by targeting the viral 5’LTR promoter region to repress its transcription. We also found that PFV infection induced abnormal expression of miRNAs targeting the ZNF219-3’UTR to downregulate ZNF219 expression. These findings indicated that ZNF219 may be a potent antiviral factor for suppressing PFV infection, and may shed light on the mechanism of virus-host interactions
    corecore