11 research outputs found

    Study on the Development of Yunnan Floral E-commerce

    No full text
    Cut flower production in Yunnan accounts for 80% nationwide. In order to expand the Yunnan Flower sales channels, the promotion of the development of e-commerce is necessary. In 2012 China's online shopping users reached 247 million people, but e-commerce of fresh flowers lagged behind due to the constraints of preservation facilities and logistics cost. The analysis of the factors restricting the development of floral e-commerce and the proposition of solutions to this problem can promote faster development of Yunnan floral e-commerce

    Abnormal Shear Performance of Microscale Ball Grid Array Structure Cu/Sn–3.0Ag–0.5Cu/Cu Solder Joints with Increasing Current Density

    No full text
    The shear performance and fracture behavior of microscale ball grid array structure Cu/Sn–3.0Ag–0.5Cu/Cu solder joints with increasing electric current density (from 1.0 × 103 to 6.0 × 103 A/cm2) at various test temperatures (25 °C, 55 °C, 85 °C, 115 °C, 145 °C, and 175 °C) were investigated systematically. Shear strength increases initially, then decreases with increasing current density at a test temperature of no more than 85 °C; the enhancement effect of current stressing on shear strength decreases and finally diminishes with increasing test temperatures. These changes are mainly due to the counteraction of the athermal effect of current stressing and Joule heating. After decoupling and quantifying the contribution of the athermal effect to the shear strength of solder joints, the results show that the influence of the athermal effect presents a transition from an enhancement state to a deterioration state with increasing current density, and the critical current density for the transition decreases with increasing test temperatures. Joule heating is always in a deterioration state on the shear strength of solder joints, which gradually becomes the dominant factor with increasing test temperatures and current density. In addition, the fracture location changes from the solder matrix to the interface between the solder matrix and the intermetallic compound (IMC) layer (the solder/IMC layer interface) with increasing current density, showing a ductile-to-brittle transition. The interfacial fracture is triggered by current crowding at the groove of the IMC layer and driven by mismatch strain at the solder/IMC layer interface, and the critical current density for the occurrence of interfacial fracture decreases with increasing test temperatures

    Abnormal Shear Performance of Microscale Ball Grid Array Structure Cu/Sn–3.0Ag–0.5Cu/Cu Solder Joints with Increasing Current Density

    No full text
    The shear performance and fracture behavior of microscale ball grid array structure Cu/Sn–3.0Ag–0.5Cu/Cu solder joints with increasing electric current density (from 1.0 × 103 to 6.0 × 103 A/cm2) at various test temperatures (25 °C, 55 °C, 85 °C, 115 °C, 145 °C, and 175 °C) were investigated systematically. Shear strength increases initially, then decreases with increasing current density at a test temperature of no more than 85 °C; the enhancement effect of current stressing on shear strength decreases and finally diminishes with increasing test temperatures. These changes are mainly due to the counteraction of the athermal effect of current stressing and Joule heating. After decoupling and quantifying the contribution of the athermal effect to the shear strength of solder joints, the results show that the influence of the athermal effect presents a transition from an enhancement state to a deterioration state with increasing current density, and the critical current density for the transition decreases with increasing test temperatures. Joule heating is always in a deterioration state on the shear strength of solder joints, which gradually becomes the dominant factor with increasing test temperatures and current density. In addition, the fracture location changes from the solder matrix to the interface between the solder matrix and the intermetallic compound (IMC) layer (the solder/IMC layer interface) with increasing current density, showing a ductile-to-brittle transition. The interfacial fracture is triggered by current crowding at the groove of the IMC layer and driven by mismatch strain at the solder/IMC layer interface, and the critical current density for the occurrence of interfacial fracture decreases with increasing test temperatures

    Forming Flaws Analysis of Lead Screw Cold Roll-Beating Based on Stress-Strain Evolution

    No full text
    Cold roll beating is an advanced precision plastic forming technology. The principle of lead screw cold roll beating was briefly introduced and the dynamic model of single beating process of lead screw cold roll beating is established. Evolutions of the principal stress, hydrostatic pressure and the principal strain in the deformable area are studied. Positions of the defects are further defined and the reasons of these are analyzed according to the stress-strain evolution. And the corresponding measures are put forward to prevent surface defects

    Minor Ag induced shear performance alternation in BGA structure Cu/SnBi/Cu solder joints under electric current stressing

    No full text
    In this work, the effect of minor Ag addition on shear performance of ball grid array (BGA) structure Cu/SnBi/Cu solder joints under electric current stressing was investigated. The results show that the shear strength of solder joints decreased with increasing current density, and the effect of Ag addition on shear strength changed from an elevating state to a deteriorating state. The elevating effect of Ag addition was due to the dominance of Sn/Bi phase refinement and Ag3Sn dispersion, which was weakened gradually with the increase in current density. The deteriorating effect of Ag addition was attributed to the more inhomogeneous distribution of current density and higher thermal gradient induced by the finer phase of the solder matrix as well as the consequent severer strain mismatch at the Sn/Bi phase interface. The finer Sn/Bi phase was also conductive to easier lattice atom migration under current stressing, resulting in a rapid decrease in shear strength. Moreover, the dominant factor on the shear strength reduction tended to change from Joule heating to athermal effect of current stressing. The fracture of solder joints indicated an insignificant influence by the Ag addition, which all occurred in the solder matrix in a ductile mode

    Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    No full text
    The mechanical and electronic properties of two GaN crystals, wurtzite and zinc-blende GaN, under various hydrostatic pressures were investigated using first principles calculations. The results show that the lattice constants of the two GaN crystals calculated in this study are close to previous experimental results, and the two GaN crystals are stable under hydrostatic pressures up to 40 GPa. The pressure presents extremely similar trend effect on the volumes of unit cells and average Ga-N bond lengths of the two GaN crystals. The bulk modulus increases while the shear modulus decreases with the increase in pressure, resulting in the significant increase of the ratios of bulk moduli to shear moduli for the two GaN polycrystals. Different with the monotonic changes of bulk and shear moduli, the elastic moduli of the two GaN polycrystals may increase at first and then decrease with increasing pressure. The two GaN crystals are brittle materials at zero pressure, while they may exhibit ductile behaviour under high pressures. Moreover, the increase in pressure raises the elastic anisotropy of GaN crystals, and the anisotropy factors of the two GaN single crystals are quite different. Different with the obvious directional dependences of elastic modulus, shear modulus and Poisson’s ratio of the two GaN single crystals, there is no anisotropy for bulk modulus, especially for that of zinc-blende GaN. Furthermore, the band gaps of GaN crystals increase with increasing pressure, and zinc-blende GaN has a larger pressure coefficient. To further understand the pressure effect on the band gap, the band structure and density of states (DOSs) of GaN crystals were also analysed in this study

    Development of high thermal conductivity of Ag/diamond composite sintering paste and its thermal shock reliability evaluation in SiC power modules

    No full text
    Diamond has the highest thermal conductivity among naturally occurring materials and a relatively low coefficient of thermal expansion (CTE), making it a promising interconnected material for next-generation semiconductor power devices. In this study, Ag/diamond composite sintering paste was developed. The agglomerated diamond particles were uniformly dispersed in the sintered Ag porous structure, and the thermal conductivity was increased from 171.4 W/(m·k) for pure Ag sintering to 288 W/(m·k) for an Ag@2%diamond (2% of the total weight of Ag) specimen. The interfacial microstructure evolution and fracture behavior were investigated in detail for a SiC/Direct Bond Copper (DBC) joint structure during an extreme thermal shock test (TST) in the range of −50 °C–250 °C. Importantly, with a moderate amount of diamond additive, the microstructural degradation and severe deformation of the DBC substrate were effectively suppressed. This is mainly attributed to the diamond addition, which can block the migration pathways of Ag atoms toward long-term thermal shock and adjust the thermo-mechanical performance of the sintered layer. This detailed study about Ag/diamond composite paste can provide new guidance for strengthening sintered Ag interconnections for SiC power modules

    Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    No full text
    The mechanical and electronic properties of two GaN crystals, wurtzite and zinc-blende GaN, under various hydrostatic pressures were investigated using first principles calculations. The results show that the lattice constants of the two GaN crystals calculated in this study are close to previous experimental results, and the two GaN crystals are stable under hydrostatic pressures up to 40 GPa. The pressure presents extremely similar trend effect on the volumes of unit cells and average Ga-N bond lengths of the two GaN crystals. The bulk modulus increases while the shear modulus decreases with the increase in pressure, resulting in the significant increase of the ratios of bulk moduli to shear moduli for the two GaN polycrystals. Different with the monotonic changes of bulk and shear moduli, the elastic moduli of the two GaN polycrystals may increase at first and then decrease with increasing pressure. The two GaN crystals are brittle materials at zero pressure, while they may exhibit ductile behaviour under high pressures. Moreover, the increase in pressure raises the elastic anisotropy of GaN crystals, and the anisotropy factors of the two GaN single crystals are quite different. Different with the obvious directional dependences of elastic modulus, shear modulus and Poisson’s ratio of the two GaN single crystals, there is no anisotropy for bulk modulus, especially for that of zinc-blende GaN. Furthermore, the band gaps of GaN crystals increase with increasing pressure, and zinc-blende GaN has a larger pressure coefficient. To further understand the pressure effect on the band gap, the band structure and density of states (DOSs) of GaN crystals were also analysed in this study.</p

    Behavior of Sn-3.0Ag-0.5Cu solder/Cu fluxless soldering via Sn steaming under formic acid atmosphere

    No full text
    Formic acid (FA) atmosphere is promising to achieve chemical reduction at the oxidized surfaces of the solder and matrix material during soldering, replacing chemical flux being challenging as the continuous decrease in the pitch of solder bump in a three-dimensional integrated circuit. Although a previous study observed the effect of Sn steaming on the wettability of the solder during FA soldering, it has not been understood yet by adequate studies. This study demonstrates the fluxless soldering behavior of Sn-3.0Ag-0.5Cu (SAC) solder/Cu under FA atmosphere. Resembling vulcanian eruption Sn steaming occurred with a solid-state Sn and promoted Sn–Cu intermetallic compound (IMC) formations obviously at temperature (210 ° C) lower than the melting temperature of Sn (231 ° C). As indicated by in-situ observations, the IMC formations led to the final spreading area of solder under FA soldering was larger than that under the soldering with rosin mildly activated (RMA) flux. The wettability of SAC solder under FA atmosphere could be improved with continuous heating

    Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals

    No full text
    The mechanical and electronic properties of two GaN crystals, wurtzite and zinc-blende GaN, under various hydrostatic pressures were investigated using first principles calculations. The results show that the lattice constants of the two GaN crystals calculated in this study are close to previous experimental results, and the two GaN crystals are stable under hydrostatic pressures up to 40 GPa. The pressure presents extremely similar trend effect on the volumes of unit cells and average Ga-N bond lengths of the two GaN crystals. The bulk modulus increases while the shear modulus decreases with the increase in pressure, resulting in the significant increase of the ratios of bulk moduli to shear moduli for the two GaN polycrystals. Different with the monotonic changes of bulk and shear moduli, the elastic moduli of the two GaN polycrystals may increase at first and then decrease with increasing pressure. The two GaN crystals are brittle materials at zero pressure, while they may exhibit ductile behaviour under high pressures. Moreover, the increase in pressure raises the elastic anisotropy of GaN crystals, and the anisotropy factors of the two GaN single crystals are quite different. Different with the obvious directional dependences of elastic modulus, shear modulus and Poisson’s ratio of the two GaN single crystals, there is no anisotropy for bulk modulus, especially for that of zinc-blende GaN. Furthermore, the band gaps of GaN crystals increase with increasing pressure, and zinc-blende GaN has a larger pressure coefficient. To further understand the pressure effect on the band gap, the band structure and density of states (DOSs) of GaN crystals were also analysed in this study.Electronic Components, Technology and Material
    corecore