28 research outputs found

    An introduction to neighborhood sustainability assessment tool (NSAT) study for China from comprehensive analysis of eight Asian tools

    Get PDF
    In comparison to city-level and building-level sustainability research, neighborhood-level sustainable urban development is less studied. One of the ways of achieving sustainability at this level is the use of the Neighborhood Sustainability Assessment Tool (NSAT), which focuses on the sustainable urban development of districts, communities, and neighborhoods. NSAT is comprised of urban sustainable indicators and associated points ascribed towards achieving specific urban agendas, called headline sustainability indicators (HSIs) and themes. In China, neighborhood-level sustainability agenda has just been recently established in 2017. Hence, there is an immediate need for NSAT development of multiple cities responding to specific regions of different climate zones in China. As an example, this study utilizes the case of Ningbo City, located in east China, for such NSAT development. This paper provides a comprehensive analytical and comparison study of eight Asian NSATs to highlight compatibilities and extract specific indicators for a new NSAT development for China. The results from this comparative and analytical study, developed through a multidimensional approach of sustainable pathway model (SPM) inform a new NSAT development in a new context. This novel contribution is significant in a context where neighborhood sustainability measures are recently developed. This study serves as the starting point for future research of NSATs in China and other countries

    Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions

    No full text
    Photometric and colorimetric quantities are calculated using spectral luminous efficiency and color matching functions (CMFs), respectively. Past studies highlighted the limitations of the standard sensitivity functions based on visual experiments conducted over a century ago. There have been new alternatives proposed, but the effect of the proposed alternatives functions on energy efficiency, and the colorimetric quality of light sources has rarely been investigated. It is reasonable to assume that updating photometric and colorimetric calculation procedures will make significant impacts on the characterization of electric light sources. Here, the impact of six luminous efficiency functions and six CMFs on luminous efficacy of radiation and chromaticity calculations were analyzed. Results indicate a significant effect of alternative functions on luminous efficacy of radiation (LER), chromaticity coordinates (CIE 1931 x,y and CIE 1976 u′,v′) and Duv. The biggest impact was caused by the change in the visual field of view (2-degree vs. 10-degree observer), highlighting the importance of visual field size for color and luminosity function. Updating the standardized luminous efficiency function may impact the performance characterization of electric light sources, but cost-benefit analysis should be studied to understand the broad impacts

    Evaluating Energy Efficiency and Colorimetric Quality of Electric Light Sources Using Alternative Spectral Sensitivity Functions

    No full text
    Photometric and colorimetric quantities are calculated using spectral luminous efficiency and color matching functions (CMFs), respectively. Past studies highlighted the limitations of the standard sensitivity functions based on visual experiments conducted over a century ago. There have been new alternatives proposed, but the effect of the proposed alternatives functions on energy efficiency, and the colorimetric quality of light sources has rarely been investigated. It is reasonable to assume that updating photometric and colorimetric calculation procedures will make significant impacts on the characterization of electric light sources. Here, the impact of six luminous efficiency functions and six CMFs on luminous efficacy of radiation and chromaticity calculations were analyzed. Results indicate a significant effect of alternative functions on luminous efficacy of radiation (LER), chromaticity coordinates (CIE 1931 x,y and CIE 1976 u′,v′) and Duv. The biggest impact was caused by the change in the visual field of view (2-degree vs. 10-degree observer), highlighting the importance of visual field size for color and luminosity function. Updating the standardized luminous efficiency function may impact the performance characterization of electric light sources, but cost-benefit analysis should be studied to understand the broad impacts

    Evolutionary Analysis of Calcium-Dependent Protein Kinase in Five Asteraceae Species

    No full text
    Calcium-dependent protein kinase (CPK) is crucial in Ca2+ signal transduction, and is a large gene family in plants. In our previous work, we reported Hevea brasiliensis CPKs were important for natural rubber biosynthesis. However, this CPK gene family in other rubber producing plants has not been investigated. Here, we report the CPKs in five representative Asteraceae species, including three rubber-producing and two non-rubber species. A total of 34, 34, 40, 34 and 30 CPKs were identified from Taraxacum koksaghyz, Lactuca sativa, Helianthus annuus, Chrysanthemum nankingense and Cynara cardunculus, respectively. All CPKs were classified into four individual groups (group I to IV). In addition, 10 TkCPKs, 11 LsCPKs, 20 HaCPKs, 13 CnCPKs and 7 CcCPKs duplicated paralogs were identified. Further evolutionary analysis showed that, compared to other subfamilies, the group III had been expanded in the Asteraceae species, especially in the rubber-producing species. Meanwhile, the CPKs in group III from Asteraceae species tend to expand with low calcium binding capacity. This study provides a systematical evolutionary investigation of the CPKs in five representative Asteraceae species, suggesting that the sub-family specific expansion of CPKs might be related to natural rubber producing

    Comparative Proteomic Analysis of Molecular Differences between Leaves of Wild-Type Upland Cotton and Its Fuzzless-Lintless Mutant

    No full text
    Fuzzless-lintless mutant (fl) ovules of upland cotton have been used to investigate cotton fiber development for decades. However, the molecular differences of green tissues between fl and wild-type (WT) cotton were barely reported. Here, we found that gossypol content, the most important secondary metabolite of cotton leaves, was higher in Gossypium hirsutum L. cv Xuzhou-142 (Xu142) WT than in fl. Then, we performed comparative proteomic analysis of the leaves from Xu142 WT and its fl. A total of 4506 proteins were identified, of which 103 and 164 appeared to be WT- and fl-specific, respectively. In the 4239 common-expressed proteins, 80 and 74 were preferentially accumulated in WT and fl, respectively. Pathway enrichment analysis and protein–protein interaction network analysis of both variety-specific and differential abundant proteins showed that secondary metabolism and chloroplast-related pathways were significantly enriched. Quantitative real-time PCR confirmed that the expression levels of 12 out of 16 selected genes from representative pathways were consistent with their protein accumulation patterns. Further analyses showed that the content of chlorophyll a in WT, but not chlorophyll b, was significantly increased compared to fl. This work provides the leaf proteome profiles of Xu142 and its fl mutant, indicating the necessity of further investigation of molecular differences between WT and fl leaves

    Sequencing and phylogenetic analysis of the complete chloroplast genome of Arisaema heterophyllum Blume

    No full text
    Arisaema heterophyllum Blume is a perennial medicinal herb widely distributed in China, Korea and Japan. In this study, the complete chloroplast genome sequence of A. heterophyllum was assembled and characterized based on high-throughput sequencing data. The whole chloroplast genome is 170,610 bp in length and contains 95,485 bp large single-copy (LSC) and 22,605 bp small single-copy (SSC) regions separated by a pair of 26,260 bp inverted repeat (IR) regions. It contained a total of 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes, with an overall GC content of 34.5%. A phylogenetic tree reconstructed by 30 chloroplast genomes reveals that A. heterophyllum is mostly related to the same genus A. ringens, A. franchetianum and A. erubescens. The complete chloroplast genome of A. heterophyllum was the firstly reported and deposited at GenBank under accession number MZ424448

    Removal of As(V) from aqueous solution by using cement-porous hematite composite granules as adsorbent

    No full text
    The potential of using Portland cement-porous hematite composite granules (CHG) as a new adsorbent for the adsorption of As(V) from aqueous solution was investigated in this study. This research was performed through the measurements of adsorption isotherm, adsorption kinetics, X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), scanning electron microscope (SEM) and energy dispersive X-ray detector (EDX). The pore structure of CHG was extraordinary developed with the porosity, the total pore volume and the average pore diameter being 45.48%, 0.3586 mL/g and 62.7 nm, respectively. From the adsorption batch of As(V) on porous hematite and CHG, CHG exhibited a high adsorption capacity of 9.84 mg/g for As(V), slightly lower than the porous hematite adsorbent. It was observed that CHG kept greater than 83% adsorption capacity of the porous hematite. However, CHG was convenient in solid-liquid separation after adsorption benefited from its high mechanical strength, stability in solutions and big size, which could be separated directly from the water without any other equipment and technology. As a result, this work provides a theoretical basis for the practical application of granular adsorbents to the actual As(V) sewage. Keywords: Porous hematite, Portland cement, Granule, As(V) adsorption, Solid-liquid separatio

    Morphology and Rheology of a Cool-Gel (Protein) Blended with a Thermo-Gel (Hydroxypropyl Methylcellulose)

    No full text
    This study investigates the morphological and rheological properties of blended gelatin (GA; a cooling-induced gel (cool-gel)) and hydroxypropyl methylcellulose (HPMC; a heating-induced gel (thermo-gel)) systems using a fluorescence microscope, small angle X-ray scattering (SAXS), and a rheometer. The results clearly indicate that the two biopolymers are immiscible and have low compatibility. Moreover, the rheological behavior and morphology of the GA/HPMC blends significantly depend on the blending ratio and concentration. Higher polysaccharide contents decrease the gelling temperature and improve the gel viscoelasticity character of GA/HPMC blended gels. The SAXS results reveal that the correlation length (ξ) of the blended gels decreases from 5.16 to 1.89 nm as the HPMC concentration increases from 1 to 6%, which suggests that much denser networks are formed in blended gels with higher HPMC concentrations. Overall, the data reported herein indicate that the gel properties of gelatin can be enhanced by blending with a heating-induced gel

    Tunable Plasmonic Perfect Absorber for Hot Electron Photodetection in Gold-Coated Silicon Nanopillars

    No full text
    Infrared detection technology has important applications in laser ranging, imaging, night vision, and other fields. Furthermore, recent studies have proven that hot carriers which are generated by surface plasmon decay can be exploited for photodetection to get beyond semiconductors’ bandgap restriction. In this study, silicon nanopillars (NPs) and gold film at the top and bottom of silicon nanopillars were designed to generate surface plasmon resonance and Fabry–Perot resonance to achieve perfect absorption. The absorption was calculated using the Finite Difference Time Domain (FDTD) method, and factors’ effects on resonance wavelength and absorption were examined. Here we demonstrate how this perfect absorber can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. Further study revealed that the resonance wavelength can be redshifted to the mid-infrared band (e.g., 3.75 μm) by increasing the value of the structure parameters. These results demonstrate a success in the study of polarization insensitivity, detection band adjustable, and efficient perfect absorption infrared photodetectors

    The complete chloroplast genome of Arisaema bockii Engler and its phylogenetic analysis in the family Araceae

    No full text
    Arisaema bockii Engler is a perennial herbaceous medicinal plant, which is widely distributed in many provinces in China such as Anhui, Jiangsu, and Zhejiang. In this study, the complete chloroplast genome sequence of A. bockii was assembled and characterized based on high-throughput sequencing data. The total length of chloroplast genome was 175,537 bp, including large single-copy (LSC) and small single-copy (SSC) regions of 98,870 bp and 23,345 bp, respectively, which were separated by a pair of 27,161 bp inverted repeat (IR) regions. The genome contained 129 genes, including 84 protein-coding genes, 36 tRNA genes, 8 rRNA genes, and one pseudogene. The overall GC content of the genome was 33.6%. A phylogenetic tree reconstructed by 30 chloroplast genomes revealed that A. bockii was mostly related to the same genus species A. ringens, A. franchetianum and A. erubescens. The work reported the first complete chloroplast genome of A. bockii, which may provide some useful information to the evolution of the family Araceae
    corecore