2 research outputs found

    The Turkana Jet diurnal cycle in observations and reanalysis

    Get PDF
    The Turkana jet is an equatorial low-level jet (LLJ) in East Africa. The jet influences both flooding and droughts, and powers Africa’s largest wind farm. Much of what we know about the jet, including the characteristics of its diurnal cycle, derives from reanalysis simulations that are not constrained by radiosonde observations in the region. Here, we report the characteristics of the Turkana jet with data from a field campaign during March–April 2021: The Radiosonde Investigation for the Turkana Jet (RIFTJet). The southeasterly jet forms on average at 380 m above the surface, with mean speeds of 15.0 m s−1. The strongest low-level winds are during the night and early morning from 0300 to 0600 LT (>16 m s−1). The average wind profile retains a characteristic low-level jet structure throughout the day, with the low-level wind maximum weakening to a minimum of 10.9 m s−1 at 1500 LT. There is significant shear, of up to 1.5 m s−1 (100 m)−1 maintained through the 1000 m above the wind maximum. The diurnal cycle of the jet is associated with the nocturnal strengthening and lowering of elevated subsidence inversions, which form above the jet. Reanalysis simulations (ERA5 and MERRA-2) do not capture the daytime persistence of the jet and underestimate the speed of the jet throughout the diurnal cycle. The largest absolute errors of over 4.5 m s−1 (−35%) occur at 0900 LT. The reanalyses also fail to simulate the elevated subsidence inversions above the jet and associated dry layer in the lower troposphere

    Observations of the Turkana jet and the East African dry tropics: The RIFTJet field campaign

    Get PDF
    The Turkana low-level jet (LLJ) is an intrinsic part of the African climate system. It is the principle conduit for water vapor transport to the African interior from the Indian Ocean, and droughts in East Africa tend to occur when the jet is strong. The only direct observations of the Turkana jet come from manual tracking of pilot balloons in the 1980s. Now, modern reanalysis datasets disagree with one another over the strength of jet winds and underestimate the strength of the jet by 25%–75% compared to the pilot balloon data. This article gives an overview of a field campaign based in northwest Kenya—the Radiosonde Investigation for the Turkana Jet (RIFTJet)—which measured the Turkana jet for the first time in 40 years using modern technologies. Radiosonde data reveal a persistent low-level jet, which formed on every night of the campaign, with an average low-level maximum wind speed of 16.8 m s−1 at 0300 LT. One of the latest reanalysis datasets (ERA5) underestimates low-level wind speeds by an average of 24% (4.1 m s−1) at 0300 LT and by 33% (3.6 m s−1) at 1500 LT. The measurements confirm the role of the Turkana LLJ in water vapor transport: mean water vapor transport at Marsabit is 172 kg m s−1. The dataset provides new opportunities to understand regional dynamics, and to evaluate models in one of the most data-sparse regions in the world
    corecore