315 research outputs found

    Intensity limits of the PSI Injector II cyclotron

    Full text link
    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ~ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted

    Indications, clinical outcome and survival of rotating hinge total knee arthroplasty in a retrospective study of 63 primary and revision cases.

    Get PDF
    PURPOSE The purpose of this study is to report and compare outcome data of both primary and revision cases using a rotating hinge knee (RHK) implant. METHODS This study retrospectively analyzed 63 cases (19 primary, 44 revisions) at a mean follow-up of 34 ± 8 months after RHK implantation. Outcome parameters were stability, range of motion (ROM), loosening, Hospital of Special Surgery Score (HSS), Knee Society Score (KSS), Oxford Knee Score (OKS), EQ-5D-3L, and Visual Analog Scale (VAS) for overall function. Revision rates and implant survival are reported. RESULTS Eleven percent showed medio-lateral instability < 5 mm, a mean ROM of 115° ± 17° and radiologic loosening occurred in 8% (2% symptomatic). PROMS showed the following results: HSS 79 ± 18, KSS 78 ± 27, OKS 26 ± 10, EQ-5D index 0.741 ± 0.233 and VAS 70 ± 20. Primary cases revealed better outcomes in HHS (p = .035) and OKS (p = 0.047). KSS, EQ-5D index and VAS did not differ between primary and revision cases (p = 0.070; p = 0.377; p = 0.117). Revision rate was 6.3% with an implant survival of 96.8%. CONCLUSIONS RHK arthroplasty can be performed with good clinical outcome and low revision rate in revision and complex primary cases. RHK is an option in cases where standard arthroplasty and even implants with a higher degree of constraint have reached their limits. LEVEL OF EVIDENCE Level III, retrospective cohort study

    Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    Get PDF
    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [ K. R. Samokhvalova, J. Zhou and C. Chen Phys. Plasmas 14 103102 (2007); J. Zhou, K. R. Samokhvalova and C. Chen Phys. Plasmas 15 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.United States. Dept. of Energy (Grant DEFG02- 95ER40919)United States. Dept. of Energy (Grant DE-FG02-05ER54836

    Beam Loss Studies for Rare Isotope Driver Linacs Final Report

    Get PDF
    The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package

    Levy-Student Distributions for Halos in Accelerator Beams

    Get PDF
    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the Stochastic Mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Shchr\"odinger--like (\Sl) equation. The space charge effects have been introduced in a recent paper~\cite{prstab} by coupling this \Sl equation with the Maxwell equations. We analyze the space charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self--consistent solutions are related to the (external, and space--charge) potentials both when we suppose that the external field is harmonic (\emph{constant focusing}), and when we \emph{a priori} prescribe the shape of the stationary solution. We then proceed to discuss a few new ideas~\cite{epac04} by introducing the generalized Student distributions, namely non--Gaussian, L\'evy \emph{infinitely divisible} (but not \emph{stable}) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non--Gaussian) L\'evy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the L\'evy--Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.Comment: revtex4, 18 pages, 12 figure

    Complementary split-ring resonator-coupled traveling wave accelerating structure

    Full text link
    In this paper, we present theoretical and simulation-based analyses of a novel, normal-conducting, multiple-cell, traveling wave accelerating structure. Instead of the conventional circular apertures, we utilize asymmetric complementary split-ring resonators to couple pillbox cavities and bring the phase velocity below that of the speed of light in vacuo. We show that this architecture exhibits a low, negative, group velocity and that the 0 through π modes decrease in order of frequency—in contrast to conventional electrically coupled structures in which the 0 mode has the lowest frequency and the π mode the highest. We illustrate the efficacy of the proposed design via electromagnetic and particle simulation results for a four-cell structure operating around 1.9 GHz. Results are given for operation in the π, 2π/3, and π/3 modes. Our design achieves accelerating gradients of around 3.3  MV/m and a cavity voltage of 0.594 MV for an applied rf power of 82 kW (π mode). The accelerating gradients achieved are up to 3.3 times that of a conventional circular aperture-coupled design with the same phase velocity, rf excitation power, operating frequency, mode type, and number of cells

    Model organisms contribute to diagnosis and discovery in the Undiagnosed Diseases Network: Current state and a future vision

    Get PDF
    Decreased sequencing costs have led to an explosion of genetic and genomic data. These data have revealed thousands of candidate human disease variants. Establishing which variants cause phenotypes and diseases, however, has remained challenging. Significant progress has been made, including advances by the National Institutes of Health (NIH)-funded Undiagnosed Diseases Network (UDN). However, 6000-13,000 additional disease genes remain to be identified. The continued discovery of rare diseases and their genetic underpinnings provides benefits to affected patients, of whom there are more than 400 million worldwide, and also advances understanding the mechanisms of more common diseases. Platforms employing model organisms enable discovery of novel gene-disease relationships, help establish variant pathogenicity, and often lead to the exploration of underlying mechanisms of pathophysiology that suggest new therapies. The Model Organism Screening Center (MOSC) of the UDN is a unique resource dedicated to utilizing informatics and functional studies in model organisms, including worm (Caenorhabditis elegans), fly (Drosophila melanogaster), and zebrafish (Danio rerio), to aid in diagnosis. The MOSC has directly contributed to the diagnosis of challenging cases, including multiple patients with complex, multi-organ phenotypes. In addition, the MOSC provides a framework for how basic scientists and clinicians can collaborate to drive diagnoses. Customized experimental plans take into account patient presentations, specific genes and variant(s), and appropriateness of each model organism for analysis. The MOSC also generates bioinformatic and experimental tools and reagents for the wider scientific community. Two elements of the MOSC that have been instrumental in its success are (1) multidisciplinary teams with expertise in variant bioinformatics and in human and model organism genetics, and (2) mechanisms for ongoing communication with clinical teams. Here we provide a position statement regarding the central role of model organisms for continued discovery of disease genes, and we advocate for the continuation and expansion of MOSC-type research entities as a Model Organisms Network (MON) to be funded through grant applications submitted to the NIH, family groups focused on specific rare diseases, other philanthropic organizations, industry partnerships, and other sources of support
    corecore