11 research outputs found

    Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors.

    Get PDF
    The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Africa is poorly described. The first case of SARS-CoV-2 in Kenya was reported on 12 March 2020, and an overwhelming number of cases and deaths were expected, but by 31 July 2020, there were only 20,636 cases and 341 deaths. However, the extent of SARS-CoV-2 exposure in the community remains unknown. We determined the prevalence of anti-SARS-CoV-2 immunoglobulin G among blood donors in Kenya in April-June 2020. Crude seroprevalence was 5.6% (174 of 3098). Population-weighted, test-performance-adjusted national seroprevalence was 4.3% (95% confidence interval, 2.9 to 5.8%) and was highest in urban counties Mombasa (8.0%), Nairobi (7.3%), and Kisumu (5.5%). SARS-CoV-2 exposure is more extensive than indicated by case-based surveillance, and these results will help guide the pandemic response in Kenya and across Africa

    Temporal trends of SARS-CoV-2 seroprevalence during the first wave of the COVID-19 epidemic in Kenya.

    Get PDF
    Observed SARS-CoV-2 infections and deaths are low in tropical Africa raising questions about the extent of transmission. We measured SARS-CoV-2 IgG by ELISA in 9,922 blood donors across Kenya and adjusted for sampling bias and test performance. By 1st September 2020, 577 COVID-19 deaths were observed nationwide and seroprevalence was 9.1% (95%CI 7.6-10.8%). Seroprevalence in Nairobi was 22.7% (18.0-27.7%). Although most people remained susceptible, SARS-CoV-2 had spread widely in Kenya with apparently low associated mortality

    SARS-CoV-2 seroprevalence and implications for population immunity: Evidence from two Health and Demographic Surveillance System sites in Kenya, February-December 2022.

    Get PDF
    BACKGROUND: We sought to estimate SARS-CoV-2 antibody seroprevalence within representative samples of the Kenyan population during the third year of the COVID-19 pandemic and the second year of COVID-19 vaccine use. METHODS: We conducted cross-sectional serosurveys among randomly selected, age-stratified samples of Health and Demographic Surveillance System (HDSS) residents in Kilifi and Nairobi. Anti-spike (anti-S) immunoglobulin G (IgG) serostatus was measured using a validated in-house ELISA and antibody concentrations estimated with reference to the WHO International Standard for anti-SARS-CoV-2 immunoglobulin. RESULTS: HDSS residents were sampled in February-June 2022 (Kilifi HDSS N = 852; Nairobi Urban HDSS N = 851) and in August-December 2022 (N = 850 for both sites). Population-weighted coverage for ≥1 doses of COVID-19 vaccine were 11.1% (9.1-13.2%) among Kilifi HDSS residents by November 2022 and 34.2% (30.7-37.6%) among Nairobi Urban HDSS residents by December 2022. Population-weighted anti-S IgG seroprevalence among Kilifi HDSS residents increased from 69.1% (65.8-72.3%) by May 2022 to 77.4% (74.4-80.2%) by November 2022. Within the Nairobi Urban HDSS, seroprevalence by June 2022 was 88.5% (86.1-90.6%), comparable with seroprevalence by December 2022 (92.2%; 90.2-93.9%). For both surveys, seroprevalence was significantly lower among Kilifi HDSS residents than among Nairobi Urban HDSS residents, as were antibody concentrations (p < 0.001). CONCLUSION: More than 70% of Kilifi residents and 90% of Nairobi residents were seropositive for anti-S IgG by the end of 2022. There is a potential immunity gap in rural Kenya; implementation of interventions to improve COVID-19 vaccine uptake among sub-groups at increased risk of severe COVID-19 in rural settings is recommended

    Seroprevalence of Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 Among Healthcare Workers in Kenya.

    Get PDF
    BACKGROUND: Few studies have assessed the seroprevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among healthcare workers (HCWs) in Africa. We report findings from a survey among HCWs in 3 counties in Kenya. METHODS: We recruited 684 HCWs from Kilifi (rural), Busia (rural), and Nairobi (urban) counties. The serosurvey was conducted between 30 July and 4 December 2020. We tested for immunoglobulin G antibodies to SARS-CoV-2 spike protein, using enzyme-linked immunosorbent assay. Assay sensitivity and specificity were 92.7 (95% CI, 87.9-96.1) and 99.0% (95% CI, 98.1-99.5), respectively. We adjusted prevalence estimates, using bayesian modeling to account for assay performance. RESULTS: The crude overall seroprevalence was 19.7% (135 of 684). After adjustment for assay performance, seroprevalence was 20.8% (95% credible interval, 17.5%-24.4%). Seroprevalence varied significantly (P < .001) by site: 43.8% (95% credible interval, 35.8%-52.2%) in Nairobi, 12.6% (8.8%-17.1%) in Busia and 11.5% (7.2%-17.6%) in Kilifi. In a multivariable model controlling for age, sex, and site, professional cadre was not associated with differences in seroprevalence. CONCLUSION: These initial data demonstrate a high seroprevalence of antibodies to SARS-CoV-2 among HCWs in Kenya. There was significant variation in seroprevalence by region, but not by cadre

    Financial Management Practices of Indigenous Financial Institutions in Kenya

    No full text
    A research project presented to the graduate faculty of the school of business and Management, United States International University-AfricaOver the last decade or so, formation of financial institutions has moved to indigenous hands. What is surprising however, is that most of these institutions turn out to be still births soon after their emergence. This is a serious area of academic and practical concern. This research had the objective of answering the following question: What are he causes of the widespread financial distress that afflicts most of our indigenous financial institutions? How can the problems afflicting indigenous financial institutions be resolved? The research objectives were to determine the reasons or he poor performance of indigenous institutions and to determine ways of alleviating the problems facing indigenous financial institutions. The researcher found out that, the single most important cause of bank failures in Kenya over he last ten years, has been poor financial management practices manifested through large credit exposures, poor asset quality and outright mismanagement through fraud and director interference

    Utilization of dried blood spot specimens can expedite nationwide surveillance of HIV drug resistance in resource-limited settings.

    No full text
    INTRODUCTION:Surveillance of HIV drug resistance (HIVDR) is crucial to ensuring the continued success of antiretroviral therapy (ART) programs. With the concern of reduced genotyping sensitivity of HIV on dried blood spots (DBS), DBS for HIVDR surveillance have been limited to ART-naïve populations. To investigate if DBS under certain conditions may also be a feasible sample type for HIVDR testing in ART patients, we piloted nationwide surveys for HIVDR among ART patients using DBS in two African countries with rapid scale-up of ART. METHODS:EDTA-venous blood was collected to prepare DBS from adult and pediatric ART patients receiving treatment during the previous 12-36 months. DBS were stored at ambient temperature for two weeks and then at -80°C until shipment at ambient temperature to the WHO-designated Specialized HIVDR Laboratory at CDC in Atlanta. Viral load (VL) was determined using NucliSENS EasyQ® HIV-1 v2.0 kits; HIVDR genotyping was performed using the ATCC HIV-1 Drug Resistance Genotyping kits. RESULTS:DBS were collected from 1,368 and 1,202 ART patients; 244 and 255 these specimens had VL ≥1,000 copies/mL in Kenya and Tanzania, respectively. The overall genotyping rate of those DBS with VL ≥1,000 copies/mL was 93.0% (95% CI: 89.1%-95.6%) in Kenya and 91.8% (87.7%-94.6%) in Tanzania. The turnaround times for the HIVDR surveys from the time of collecting DBS to completing laboratory testing were 6.5 months and 9.3 months for the Kenya and Tanzania surveys, respectively. CONCLUSIONS:The study demonstrates a favorable outcome of using DBS for nationwide surveillance of HIVDR in ART patients. Our results confirm that DBS collected and stored at ambient temperature for two weeks, and shipped with routine courier services are a reliable sample type for large-scale surveillance of acquired HIVDR

    Replication Data for: Impact of COVID-19 on mortality in coastal Kenya: a longitudinal open cohort study

    No full text
    This is a replication dataset for the manuscript titled: "Impact of COVID-19 on mortality in coastal Kenya: a longitudinal open cohort study". These datasets contain aggregated mortality data from the Kilifi HDSS used to describe the impact of COVID-19 on all-cause mortality from 2020-2022

    Epidemiological impact and cost-effectiveness analysis of COVID-19 vaccination in Kenya

    Get PDF
    Background: Few studies have assessed the epidemiological impact and the cost-effectiveness of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. Methods: We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (> 18 years) population prioritizing roll-out in over 50-year olds (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at 7perdoseandvaccinedeliverycostsof7 per dose and vaccine delivery costs of 3.90-6.11perdose.Thecost−effectivenessthresholdwasUSD919.Findings:Slowroll−outat306.11 per dose. The cost-effectiveness threshold was USD 919. Findings: Slow roll-out at 30% coverage largely targets over 50-year-olds and resulted in 54% fewer deaths (8,132(7,914 to 8,373)) than no vaccination and was cost-saving (ICER=US-1,343 (-1,345 to -1,341) per DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757 to 872) and 5% (282 (251 to 317) but was not cost-effective, using Kenya’s cost-effectiveness threshold (919.11).Rapidroll−outwith30 919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=-1,607 (-1,609 to -1,604) per DALY averted) compared to slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. Interpretation: With prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effectiv

    Data for Revealing the extent of the COVID-19 pandemic in Kenya based on serological and PCR-test data

    No full text
    Policy makers in Africa need robust estimates of the current and future spread of SARS-CoV-2. Data suitable for this purpose are scant. We used national surveillance PCR test, serological survey and mobility data to develop and fit a county-specific transmission model for Kenya. We estimate that the SARS-CoV-2 pandemic peaked before the end of July 2020 in the major urban counties, with 34 - 41% of residents infected, and will peak elsewhere in the country within 2-3 months. Despite this penetration, reported severe cases and deaths are low. Our analysis suggests the COVID-19 disease burden in Kenya may be far less than initially feared. A similar scenario across sub-Saharan Africa would have implications for balancing the consequences of restrictions with those of COVID-19
    corecore