77,944 research outputs found
Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions
This article is available open access from the NCBI website at the link below. Copyright 2013 © Neural Regeneration Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system during the observation of intransitive movements by shadows and line drawings of hands. This study examined the suppression of electroencephalography mu waves (8–13 Hz) induced by observation of stimuli in 18 healthy students. Three stimuli were used: real hand actions, hand shadow actions and actions made by line drawings of hands. The results showed significant desynchronization of the mu rhythm (“mu suppression”) across the sensorimotor cortex (recorded at C3, Cz and C4), the frontal cortex (recorded at F3, Fz and F4) and the central and right posterior parietal cortex (recorded at Pz and P4) under all three conditions. Our experimental findings suggest that the observation of “impoverished hand actions”, such as intransitive movements of shadows and line drawings of hands, is able to activate widespread cortical areas related to the putative human mirror neuron system.The National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher Education of China
Gravitational-Wave Implications for the Parity Symmetry of Gravity at GeV Scale
Gravitational waves generated by the coalescence of compact binary open a new window to test the fundamental properties of gravity in the strong-field and dynamical regime. In this work, we focus on the parity symmetry of gravity which, if broken, can leave imprints on the waveform of gravitational wave. We construct generalized waveforms with amplitude and velocity birefringence due to parity violation in the effect field theory formalism, then analyze the open data of the ten binary black-hole merger events and the two binary neutron-star merger events detected by LIGO and Virgo collaboration. We do not find any signatures of violation of gravitational parity conservation, thereby setting the lower bound of the parity-violating energy scale to be GeV. This presents the first observational evidence of the parity conservation of gravity at high energy scale, about 17 orders of magnitude tighter than the constraints from the Solar system tests and binary pulsar observation. The third-generation gravitational-wave detector is capable of probing the parity-violating energy scale at GeV
Incomplete Information based Collaborative Computing in Emergency Communication Networks
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Due to the urgent and unpredictable nature of disaster relief, emergency management systems (EMS) faces an enormous challenge of real-time data analysis without the complete information from emergency communication networks (ECNs). In this letter, we propose an incomplete information based twotier game model (IITG) to realize collaborative computing at the edge of ECNs, which incentivizes idle computing devices (ICDs) to share computation resources through maximizing utilities of EMS and ICDs. Furthermore, we develop a near-optimal IITG algorithm (N-IITG) to seek the unique Bayesian Nash equilibrium. Simulation results reveal that N-IITG outperforms the existing incomplete information based methods in terms of computation latency and participants utilities
Laser Mode Bifurcations Induced by -Breaking Exceptional Points
A laser consisting of two independently-pumped resonators can exhibit mode
bifurcations that evolve out of the exceptional points (EPs) of the linear
system at threshold. The EPs are non-Hermitian degeneracies occurring at the
parity/time-reversal () symmetry breaking points of the threshold
system. Above threshold, the EPs become bifurcations of the nonlinear
zero-detuned laser modes, which can be most easily observed by making the gain
saturation intensities in the two resonators substantially different. Small
pump variations can then switch abruptly between different laser behaviors,
e.g. between below-threshold and -broken single-mode operation.Comment: 4 pages, 3 figure
Fiber Based Multiple-Access Optical Frequency Dissemination
We demonstrate a fiber based multiple-access optical frequency dissemination
scheme. Without using any additional laser sources, we reproduce the stable
disseminated frequency at an arbitrary point of fiber link. Relative frequency
stability of 3E10^{-16}/s and 4E10^{-18}/10^4s is obtained. A branching fiber
network for highly-precision synchronization of optical frequency is made
possible by this method and its applications are discussed.Comment: 5 pages, 3 figure
Spiral Chain O4 Form of Dense Oxygen
Oxygen is in many ways a unique element: the only known diatomic molecular
magnet and the capability of stabilization of the hitherto unexpected O8
cluster structure in its solid form at high pressure. Molecular dissociations
upon compression as one of the fundamental problems were reported for other
diatomic solids (e.g., H2, I2, Br2, and N2), but it remains elusive for solid
oxygen, making oxygen an intractable system. We here report the theoretical
prediction on the dissociation of molecular oxygen into a polymeric spiral
chain O4 structure (\theta-O4) by using first-principles calypso method on
crystal structure prediction. The \theta-O4 stabilizes above 2 TPa and has been
observed as the third high pressure phase of sulfur (S-III). We find that the
molecular O8 phase remains extremely stable in a large pressure range of 0.008
- 2 TPa, whose breakdown is driven by the pressure-induced instability of a
transverse acoustic phonon mode at zone boundary, leading to the ultimate
formation of \theta-O4. Remarkably, stabilization of \theta-O4 turns oxygen
from a superconductor into an insulator with a wide band gap (approximately 5.9
eV) originating from the sp3-like hybridized orbitals of oxygen and the
localization of valence electrons. (This is a pre-print version of the
following article: Li Zhu et al, Spiral chain O4 form of dense oxygen, Proc.
Natl. Acad. Sci. U.S.A. (2011), doi: 10.1073/pnas.1119375109, which has been
published online at http://www.pnas.org/content/early/2011/12/27/1119375109 .)Comment: 13 apages, 3 figure
- …