5,883 research outputs found

    Hard X-ray emission cutoff in anomalous X-ray pulsar 4U 0142+61 detected by INTEGRAL

    Full text link
    The anomalous X-ray pulsar 4U 0142+61 was studied by the INTEGRAL observations. The hard X-ray spectrum of 18 -- 500 keV for 4U 0142+61 was derived using near 9 years of INTEGRAL/IBIS data. We obtained the average hard X-ray spectrum of 4U 0142+61 with all available data. The spectrum of 4U 0142+61 can be fitted with a power-law with an exponential high energy cutoff. This average spectrum is well fitted with a power-law of Γ∼0.51±0.11\Gamma\sim 0.51\pm 0.11 plus a cutoff energy at 128.6±17.2128.6\pm 17.2 keV. The hard X-ray flux of the source from 20 -- 150 keV showed no significant variations (within 20%\%) from 2003 -- 2011. The spectral profiles have some variability in nine years: photon index varied from 0.3 -- 1.5, and cutoff energies of 110 -- 250 keV. The detection of the high energy cutoff around 130 keV shows some constraints on the radiation mechanisms of magnetars and possibly probes the differences between magnetar and accretion models for these special class of neutron stars. Future HXMT observations could provide stronger constraints on the hard X-ray spectral properties of this source and other magnetar candidates.Comment: 9 pages, 5 figures, 2 tables, figures are updated, new data are added, conclusion does not change, to be published in RA

    A Distributed Cooperative Dynamic Task Planning Algorithm for Multiple Satellites Based on Multi-agent Hybrid Learning

    Get PDF
    AbstractTraditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often affect the result's optimality. Noticing that the historical information of cooperative task planning will impact the latter planning results, we propose a hybrid learning algorithm for dynamic multi-satellite task planning, which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning. The reinforcement learning strategy of each satellite is described with neural networks. The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively. To avoid the failure of the historical learning caused by the randomly occurring observation requests, a novel approach is proposed to balance the quality and efficiency of the task planning, which converts the historical learning strategy to the current initial learning strategy by applying the transfer learning algorithm. The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests

    Dynamical Computation on Coefficients of Electroweak Chiral Lagrangian from One-doublet and Topcolor-assisted Technicolor Models

    Full text link
    Based on previous studies deriving the chiral Lagrangian for pseudo scalar mesons from the first principle of QCD, we derive the electroweak chiral Lagrangian and build up a formulation for computing its coefficients from one-doublet technicolor model and a schematic topcolor-assisted technicolor model. We find that the coefficients of the electroweak chiral Lagrangian for the topcolor-assisted technicolor model are divided into three parts: direct TC2 interaction part, TC1 and TC2 induced effective Z' particle contribution part, and ordinary quarks contribution part. The first two parts are computed in this paper and we show that the direct TC2 interaction part is the same as that in the one-doublet technicolor model, while effective Z' contributions are at least proportional to the p^2 order parameter \beta_1 in the electroweak chiral Lagrangian and typical features of topcolor-assisted technicolor model are that it only allows positive T and U parameters and the T parameter varies in the range 0\sim 1/(25\alpha), the upper bound of T parameter will decrease as long as Z' mass become large. The S parameter can be either positive or negative depending on whether the Z' mass is large or small. The Z' mass is also bounded above and the upper bound depend on value of T parameter. We obtain the values for all the coefficients of the electroweak chiral Lagrangian up to order of p^4.Comment: 52 pages, 15 figure
    • …
    corecore