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Abstract 

Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites.
However, the traditional heuristic strategies depend on the concrete tasks, which often affect the result’s optimality. Noticing that 
the historical information of cooperative task planning will impact the latter planning results, we propose a hybrid learning algo-
rithm for dynamic multi-satellite task planning, which is based on the multi-agent reinforcement learning of policy iteration and
the transfer learning. The reinforcement learning strategy of each satellite is described with neural networks. The policy neural
network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively. To
avoid the failure of the historical learning caused by the randomly occurring observation requests, a novel approach is proposed
to balance the quality and efficiency of the task planning, which converts the historical learning strategy to the current initial
learning strategy by applying the transfer learning algorithm. The simulations and analysis show the feasibility and adaptability 
of the proposed approach especially for the situation with randomly occurring observation requests. 

Keywords: multiple satellites dynamic task planning problem; multi-agent systems; reinforcement learning; neuroevolution of 
augmenting topologies; transfer learning 

1. Introduction1

Earth observing satellites (EOSs) receive the remote 
sensing information from the surface of Earth sent by 
satellite borne sensor in space, which have advantages 
of no constraint on any country, long observation, 
wide coverage, etc. They are widely applied in envi-
ronment monitoring, military reconnaissance and so 
forth. In the actual satellite observation process, a mass 
of observation requests occur randomly. How to sup-
port multiple satellites to fulfill complex and randomly 
occurring tasks cooperatively in the dynamic environ-
ment through the effective planning strategy is the 
current problem of multi-satellite task planning re-
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search to be solved urgently .[1]

To guarantee the calculation speed, the traditional 
satellite task planning algorithms [2-6] for the dynamic 
environment, mostly adjust the existent plan based on 
heuristic rules. However, the heuristic strategy has 
greater dependence on the concrete tasks, so that the 
optimality of the results could not be guaranteed as it 
is restricted by the task. Moreover, the distributed co-
operative task planning for multiple satellites needs to 
respond to the dynamic environment quickly, but it 
does not pursuit one-sidedly the solving speed for the 
algorithm. Balancing the calculation speed, optimiza-
tion and adaption to the dynamic environment is the 
key to solve multiple satellites cooperative task plan-
ning. 

In the process of planning, historical planning in-
formation will have an important influence on the fol-
low-up planning results, but the current satellite task 
planning research lacks utilization of historical infor-
mation. To tackle the problem of multiple satellite dy-Open access under CC BY-NC-ND license.
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namic cooperative planning effectively caused by ran-
domly incoming task, a hybrid learning algorithm 
based on multi-agent reinforcement learning (MA- 
RL) [7-9] and transfer learning (TL) [10-12] is proposed. 
The reinforcement learning policy is designed based 
on neural networks which is capable of describing the 
large-scale state and action space generated by obser-
vation request. The accumulated historical cooperative 
planning information is converted to the current avail-
able planning information by applying TL algorithm, 
which both accelerates the calculation speed and 
guarantees the result’s optimality. 

2. Distribution of Multi-satellite Cooperative Dy-
namic Task 

2.1. Problem description 

In the multi-satellite cooperative task planning sys-
tem composed of multiple EOSs with autonomous 
planning capability, each satellite is considered as an 
agent for the randomly occurring observation request. 
Realizing the dynamic distribution for the random 
tasks by coordination, each agent expects that tasks are 
assigned quickly and reasonably to every satellite 
based on autonomous computing, so that global ob-
servation obtains maximum benefit under the condi-
tion of meeting the constraints of each satellite. 

Multi-satellite dynamic task planning (MSDTP) has 
characteristics as follows: 

(1) Satellite agents have differences in capability. 
The number of resources consumed by different satel-
lite may not be equal when they perform the same task. 

(2) Cooperative environment information is partially 
visible to the agent. Each agent only has limited re-
sources and capability, and the agent could only make 
the decision in accordance with its own state and the 
partial environment information. 

(3) Planning environment changes due to the ran-
domly occurring observation request, which increases 
the complexity of solving the problems. In the process 
of cooperative planning, not only coordination among 
multiple satellites is considered, but also new tasks are 
required to be integrated into historical planning re-
sults. 

In the multi-satellite cooperative dynamic task plan-
ning, variables are involved as follows: 

(1) Given that planning period is wschedule=[tS, tE], 
where tS is the start time of the planning and tE the end 
time. 

(2) NS agents in total with heterogeneous capability 
are involved in the cooperative task planning, which 
are denoted as SAT={sat1, sat2, …, satNs}. satk SAT, 
satk=<Rk,Vst, Rk,Mem, Rk,Eng >, where Rk,Vst means avail-
able object visiting window resource of satk, Rk,Mem is 
the available storage resource of satk, Rk,Eng means the 
current available energy. 

(3) NA randomly occurring observation requests in 
the [tS, tE] are assumed, denoted by TSK={

1
TSK ,t

2
TSK ,t

…, TSK ),
NAt tS t1 < t2<…<

ANt tE, the ob-

servation requests emerging at the moment of i  are 
collected, indicated by TSK

it
= { tsk1, tsk2, …,

T
tskN },

and | TSK
it
|=NT. tskj T is expressed as tskj={uj,

Aj(k)}, satk SAT, where uj is the evaluation gained by 
finishing tskj; Aj(k)= <Aj,Vst(k), Aj,Mem(k), Aj,Eng(k)>
means resource vector demanded by tskj from satk.
Due to the heterogeneous capability, resource de-
manding vector of different satellites is not equal for 
the same object tskj. Aj,Vst(k), Aj,Mem(k), and Aj,Eng(k)
respectively represent the time window resource, 
memory capacity and energy consuming which are 
taken by satellite satk who observes tskj. The necessary 
condition of the object tskj which could be observed is 
Aj,Vst(k) Rk,Vst Aj,Mem(k) Rk,Mem Aj,Eng(k) Rk,Eng.

2.2. Model construction 

MSDTP could be expressed as a tuple:< S
1{ } ,N

k kS
S
1{ } ,N

k kA S
1{ } ,N

k k P, O, S
1{ }N

k kC >. In which, 
(1) Sk is the state space of each satellite agent. sk,t Sk

is the state of satk at time t which is expressed as a tu-
ple <CRk,t, STk,t >, in which CRk,t = < ,Vstcr ,k

t ,Memcr ,k
t

,Engcrk
t > is the available capability vector of satk at time 

t, i.e. the remaining capability vector. And STk,t

1
TSK

i

i t
ti

is the current selected task set. 

(2) Ak ={ak,t|ak,t P(
1
TSK

i

i t
ti

)} is the action set of 

satk, where 
1

( TSK )
i

i t
ti

P  means the power set of the 

observation request set 
1
TSK

i

i t
ti

at time t.

(3) k={STi,t|I SAT i k} is task planning infor-
mation of satk interacting with other satellites at t.

(4) P=Pr( 1, ,s s |s1, a1,…, sk, ak) means the joint 
state transfer probability with consideration of the 
current state and selected action, determined by action 
of each satellite.

(5) O is the object of MSDTP, while satisfying the 
constraints for each satellite, it determines ST= 

sat SAT
ST

k
k ( the set of tasks to be observed), which 

makes the most benefit by SAT through completing 
TSK (the set of dynamic task). That is, 

SAT ST
max ( )

k

j j
k j

O u x k         (1) 

where the decision variable is 
1 sat  observes tsk

( )
0 Otherwise

k j
jx k      (2) 

(6) Ck is the constraints of each satellite, consisting 
of Eqs. (3)-(6): 

,Eng Eng
SAT ST

( )
k

k
j

k j
A k R          (3) 
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,Vst Vst
SAT ST
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k j
A k R          (5) 

1 2 1 2tsk , tsk ,j j T j j :

1 2, ,Vst Vst( ) ( )j jr k r k          (6) 

where rj,Vst Rk,Vst means the time window resource 
taken by tskj, and sj,k and ej,k are start time and end time 
of the task. 

Eq. (3) means the observation process could not 
violate the energy constraint of satellite; Eq. (4) pre-
vents the observation from exceeding the memory ca-
pacity; Eq. (5) means the time window of the total se-
lected tasks could not exceed the available time window; 
Eq. (6) is to ensure that the time window resources do 
not collide caused by different tasks of the same satel-
lite.

3. Framework of Hybrid Learning Algorithm 

Through analyzing the model, it is known that the 
process of solving MSDTP is a problem of decentral-
ized Markov decision process (DEC-MDP). Bernstein 
pointed out that the optimal strategy of solving DEC- 
MDP has the complexity of NEXP-complete [13].

To tackle the DEC-MDP problem, the method of 
reinforcement learning is mostly adopted. If the rein-
forcement learning algorithm [14-15] is adopted based on 
value function iteration (VFI) to tackle MSDTP, the 
amount of time and storage space is needed although 
optimal strategy could be found, and there are two 
factors which restrict the VFI, with the task scale ex-
panding caused by increasing observation requests. 
One is the convergence speed: in order to find optimal 
policy, VFI has to experience the whole state-action 
space, in the process of which consumes a lot of time, 
therefore the reinforcement learning algorithm based 
on VFI converges slowly. The other is the reuse of 
historical planning information: the result of rein-
forcement learning always depends on the concrete 
indication of state-action, while in MSDTP the state 
and action space change with observation request in-
creasing, which causes the historical cooperative plan-
ning useless, and the complete relearning will pay a 
very high price. 

Based on the analysis above, a multiple satellites 
dynamic hybrid learning algorithm (MSDHLA) com-
bined with reinforcement learning based on policy 
search [16-21] (specifically, the multi-agent cooperative 
NEAT (MACoNEAT) algorithm described in Section 4) 
and transfer learning [10-12] is proposed for randomly 
occurring observation requests. Fig. 1 shows the 

Fig. 1  Framework of multiple-satellite dynamic hybrid learning algorithm.



· 496 · WANG Chong et al. / Chinese Journal of Aeronautics 24(2011) 493-505 No.4 

framework of the algorithm. A search policy is de-
scribed by a neural network. Some approximate policy 
neural network individuals form a policy inche. 
Therefore, the populations in every satellite agent con-
sist of such inches. All the policy populations of the 
agent constantly search optimal planning strategy 
iteratively through coevolution. The output of each 
neural network denotes a task sequence of such satel-
lite. Thus in order to calculate the fitness of every in-
dividual in the policy population, the individual should 
be decoded in MSDTP domain, and then is calculated 
with representative individuals from policy population 
from other satellites, which is detailed in Section 4.4. 
When the change of state space is caused by randomly 
occurring observation requests, the learning rate for 
newly added tasks is improved through learning ex-
perience, and results of historical assigned tasks for 
multiple satellites are reused by transfer learning. 

4. MACoNEAT Algorithm for Multiple Satellites 

In the MSDTP, an exponential relationship between 
state and action space and current cumulative task 
scale will lead to “curse of dimensionality” if the 
method of temporal difference (TD) and so forth are 
used for iterative estimation based on VFI. Different 
from the algorithm of TD solved by VFI iteration, pol-
icy search [16-22] in the reinforcement learning searches 
policy space by direct utilization of optimization algo-
rithm to find the optimal policy. And neuro evolution 
(NE) algorithm [17-18,21-22] iteratively optimizes neural 
network populations by using search capability of NE, 
which could tackle effectively reinforcement learning 
problem in high dimensional state space. 

However, since traditional NE approaches [18,22]

have determined the structure of neural network in 
advance, including number of hidden nodes and the 
connections, the weight of neural network is just opti-

mized through NE algorithm. And what is more, the 
topology of neural network has great influence on the 
optimality of the result. 

For that, according to the idea of NeuroEvolution 
of augmenting topologies (NEAT), the algorithm of 
MACoNEAT is proposed, combining the multi-satel-
lite cooperative task planning problem. In MACo- 
NEAT, the topological structure and the weight of 
policy individual of neural network evolve at the 
same time in the populations of each satellite agent. 
Avoiding the task observation redundancy of multi- 
ple satellites, the joint fitness is calculated among 
agents, which improves the global planning effec-
tiveness. 

4.1. Genetic encoding 

Before genetic encoding, the first thing is to de-
scribe the task planning problem of each satellite in 
MSDTP in the way of neural network. For the agent 
satk in the MSDTP, each neural network represents the 
task selection policy of satk under the current task dis-
tribution. Each input node in the neural network 
represents the segment of learning policy at time t;
each output represents the task selection action of satk.
In order to make the subsequent operation of crossover 
and mutation, a neural network is firstly transferred 
into a chromosome. Considering the characteristics of 
the policy neural network which describes the problem 
of MSDTP, chromosome is generated by adopting the 
length-variable genetic encoding for policy neural 
network of agent. As illustrated in Fig. 2, every single 
chromosome contains some connection genes, where 
each connection gene contains interconnected input 
and output node identity, connection weight, current 
state and global historical identity (the details are in 
Section 4.3). The length of each chromosome is de-
termined by input nodes, output nodes, hidden nodes 

Fig. 2  Encoding of reinforcement learning policy neuron network. 
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and the connection way between nodes. 
It should be noted that all the neural network indi-

viduals of initial policy population in each satellite 
agent only consist of connection gene constructed by 
input and output nodes. 

4.2. Mutation operators 

In MACoNEAT, mutation consists of two mutation 
operators, which are node connection weight mutation 
operator and network structure mutation operator. The 
mutation operator of connection weight is the same as 
other NE algorithms, which is to adjust the weight of 

each connection gene with the probability of mc.
Structural mutation operators achieve the changes of 
structure of chromosome group by two ways of con-
nection mutation and node mutation. The connection 
mutation operators establish connection by stochastic 
weight between unconnected nodes in the existent 
neural network (see Fig. 3(a)); node mutation is oper-
ated by adding the node nnew to the current connection, 
cutting off existent connection and generating two new 
connections, and setting nnew as the connection weight 
of input node to 1 while nnew as the output node con-
sistent with original connection (see Fig. 3(b)). 

Fig. 3  Illustration of structural mutation operators. 

4.3. Crossover operators 

With the evolution of MACoNEAT, the neural net-
work individual containing in each agent policy popu-
lation changes the topological structure of neural net-
work through a variety of operations. The first thing is 
to match the connection gene of parent chromosome if 
crossover operation is to be made. For this reason, a 
global historical identity (GHI) is employed to record 
the additional connection together for all individuals in 
populations, and the same connection gene has the 
same GHI. 

Before performing the crossover operation, both of 
connection genes in parent chromosome are firstly 

matched according to their GHIs: if their GHIs are 
equal, the genes are matched; otherwise, the matched 
connection genes do not exist in the two parent chro-
mosomes. There are two cases classified as “disjoint” 
and “excess” based on the position of unmatched con-
nected gene, as shown in Fig. 4. When the crossover 
operation is performed, firstly, two parent individuals 
are sorted according to the GHI order. The matched 
genes in parent individuals are stochastically selected 
as offspring gene. When “disjoint” and “excess” hap-
pen, the connection genes are inherited from the more 
suitable parent. In this case, equal fitness is assumed, 
so the disjoint and excess genes are also inherited ran-
domly. 
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Fig. 4  Illustration of crossover operators. 

In this way, GHIs allow NEAT to perform crossover 
using linear genomes without the need for expensive 
topological analysis. 

4.4. Fitness calculation 

There are two factors to be considered for calculat-
ing fitness of policy neural network individuals in the 
policy population of every agent: first, infeasible pol-
icy individuals violating constraints of satellite are 
necessarily generated after performing the operations 
of crossover and mutation. Mitsuc, et al. [23] pointed 
out that optimal solution would appear on the bound-
ary between feasible solution domain and infeasible 
solution domain, for that the punishment function 
method is employed and the optimal solution could be 
approached by two ways of feasible solution domain 
and infeasible solution domain; second, while each 
satellite agent iteratively searches for the optimal pol-
icy, the redundant observation among satellites due to 
repeated observation is necessarily to be considered. 
Based on Tan’s [24] innovation of joint fitness calcula-
tion based on cooperative coevolution, the fitness of 
individual in the population is determined, as illus-

trated in Fig. 5. For that, the fitness of policy individ-
ual is defined by 

utility punish stimulateFitness k k k
k f f f (7)

where utility sat
( )

k

k
j jj

f u x k is the sum of utilities 

of current selected tasks, punish
kf the punishment func-

tion of constraints defined by 

Vst
,CONS

ex
tsk TSK,Vst

punish c Vst
,Vst ,CONS| TSK |

j k
jkk

k k

uR
f c

R

Mem Eng
,CONS ,CONS

exex
tsk TSK tsk TSK,Eng,Mem

Mem Eng
,Mem ,Eng,CONS ,CONS| TSK | | TSK |

j k j k
j jkk

k kk k

u uRR
R R

 (8) 
where ex

,VstkR is the excess time window of current 

selected tasks, compared with Rk,Vst. ex
,MemkR is the ex-

cess memories. ex
,EngkR is the excess energy consump-

tion, compared with Rk,Eng. Vst
,CONSTSK ,k

Vst
,CONSTSKk
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Fig. 5  Illustration of multi-satellite cooperative fitness assignment. 

and Vst
,CONSTSKk mean the task set of violating visiting 

window, memory storage, energy consumption respec-
tively. cc (0, 1) is the coefficient of constraint pun-
ishment. fstimulate is the multi-satellite stimulated func- 
tion, determined by 

RDN
stimulate s tsk TSK

max
j

jk r
f c

r

max

min max

2
1 exp[( ) /( )]j j

u
u u u u

      (9) 

where TSKRDN means the task set of repeated visits 
generated by the current satellite and other satellite, rj
is the number of repeated observation of tskj, rmax is the 
maximal number of repeated observation, umax and umin
respectively mean the maximal utility and minimal 
utility of tasks, cs is the coefficient of stimulation. 

4.5. Specification 

After the crossover and mutation operation, the ini-
tial fitness of offspring individual of policy neural 
network with new topological structure may be low. To 
ensure that offspring individuals with topological in-
novation are able to store in the subsequent evolution 
to maintain the diversity of the policy population, the 
individual with similar topological structure is com-
posed of sub-population, and is optimized iteratively 
within the niche. 

Based on GHI, the similarity of topological structure 
of individuals is calculated and the speciation is 
achieved, which is to avoid complex topological cal-
culation between different individuals. Thus, species is 
established. The compatibility distance between indi-

viduals is defined by 

1 2
3

c E c D c W
N N

          (10) 

where E and D are respectively the number of connec-
tion gene “excess” and “disjoint” by two chromosomes, 
N means the number of the connection genes in one of 
the two chromosomes larger in scale, W  is the aver-
age weight difference of match genes, c1, c2, and c3 are 
respectively the weight coefficients of E, D and W .

Based on Eq. (10),  for a new chromosome g is 
calculated with chromosome representatives of each 
species. If the compatibility is less than the threshold 
value t , g will be added to the species. Otherwise, a 
new species is created with g as its representative. 

In the process of speciation, explicit fitness shar-
ing [19] is applied in the population of agent to calculate 
the fitness of species F (i) based on Eq. (11), in order 
to avoid the situation that any good individual in some 
species takes over the entire population excessively 
and then planning results get trapped into the subopti-
mal. 

F (i) is determined by the compatibility distance of i
and other individuals in the population: 

1

( )( )
sh( ( , ))n

j

F iF i
i j

          (11) 

The sharing function sh( ) is set to 0 when the dis-
tance (i, j) is above the threshold t , otherwise, sh(
(i, j)) is set to 1. Thus explicit fitness sharing lowers 
the individual fitness with larger scale in sub-popu- 
lation. Every species is assigned a potentially different 
number of offspring in proportion to the sum of ad-
justed finesses F (i) of its member avoiding that any 
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species controls the entire population. Thus, the diver-
sity of population is guaranteed and the premature is 
avoided. 

5. Incremental Planning Strategy Transfer Learn-
ing 

For TSK
tt , the set of randomly occurring observa-

tion requests at tt, agent needs to integrate it with the 
historical observation set 1

1
TSK

i

t
ti

 to ensure the 
global optimum of multi-satellite cooperative planning 
results, and to re-learn for new observation set 

1

1
TSK

i

t
ti

, which is very time-consuming. The ex-
pansion of the new observation set in MSDTP expands 
is based on historical observation, and the learning 
speed of the new task set shall be improved by using 
multi-satellite historical planning policy information. 

Based on the idea of TL [10-12], we design an incre-
mental planning strategy transfer learning algorithm 
(IPSTL). Satellite agent learning policy mapping func-
tion is given by 

,target , ,source( )k k H k          (12) 
where k,source means a individual in policy neural net-
work population while satk turns towards the historical 
task set, k,target the individual in the target initial policy 
neural network population of satk for the new observa-
tion set 

1
TSK ,

i

t
ti

 and k,H the transfer learning 
function of satk.

Satellite agent learning policy is described by neural 
network in MACoNEAT, thus k,H is used to establish 
the mapping function between individuals of historical 
policy neural network and policy target neural net-
work.

The state and action space of history and target re-
inforcement learning have changed due to TSK ,

tt

which leads to the corresponding changes of the input 
and output in policy neural network. Therefore, the 
mapping functions H,X and H,A which denote the in-
put and output in history-target policy neural network 
are designed. xj,source= H,X (xi,target) means each input 
node in the mapping target policy neural network is 
mapped to the most relevant input node in history pol-
icy neural network; in a similar way, xj,source= H,A(xi,target)
means each output node in the mapping target policy 
neural network is mapped to the most relevant output 
node in history policy neural network. 

Under the given conditions of H,X, H,A and the his-
tory policy individual k,source, hidden nodes with the 
same number as history policy neural network are 
added to initial target policy neural network. The de-
fined function hsource= (htarget) represents the corre-
sponding relationship of the hidden nodes between 
history and target policy neural network. Therefore, 
each node n in k,target could be mapped to k,source by 
function .

,

,

( ) if  is an input node
( ) ( ) if  is an output node

( ) if  is an hidden node

H X

H A

n n
n n n

n n
   (13) 

According to , the corresponding node in k,source is 
copied and k,target connection is established. For the 
nodes ni and nj in k,target, if there exists a connection 
between the corresponding nodes (ni) and (nj) in 

k,source, a connection with equal weighted value be-
tween ni and nj will be established. 

Through k,H, the history learning policy is trans-
ferred to the initial target learning policy. All target 
learning policies inherit the topological structure and 
weigh information to accelerate the learning speed of 
new observation for multiple satellites. The specific 
process for TL algorithm of satk policy is given in 
Fig. 6. 

Algorithm: Incremental history policy transfer learning (Sk Ak, pk, Pk,HIS)

// Sk: set of all states in satk, Ak: set of all actions in satk, pk: population size of satk

// Pk,HIS: history learned policy population
1: for 1 to pk do 
2: Pk [ ] CONSTRUCT-POLICY-NEURAL-NETWORK(Sk, Ak)

// construct a target neural network where nodes are determined by the current tasks

3: ADD-HIDDEN-NODES (Pk [ ], Pk,HIS[ ]) 
//add the same number of hidden nodes to Pk [ ] as Pk,HIS[ ]

4: for each pair of nodes ni and nj in Pk[ ] do 
5: if link ( (ni, nj)) in then 
6: ADD-LINK(ni, nj)     //Add link (ni, nj) with weight identical to link ( (ni, nj))

Fig. 6  Pseudocode of policy transferring algorithm.

Therefore, the detailed process of multiple satellites 
dynamic hybrid learning algorithm is shown in Fig. 7. 

6. Convergence Analysis 

Based on the analysis above, it is obvious that the 
IPSTL algorithm does not affect the convergence of 
MSDHLA, which is decided by MACoNEAT. 

In order to analyze the convergence of MACoNEAT, 
the definition of Nash optimal is given: 

Definition 1 (Nash Optimal)  For the MSDTP and 
a set of policies 1 2{ , , }

SNP P P P , if Pi in sati

satisfies Eq. (14), then it is considered that the process 
of finding joint policies of multiple satellites achieves 
the Nash equilibrium. And then, P* is the Nash opti-
mal. 

* * *
S(ind ,{ind }) (ind ,{ind }) =1, 2, , i i j i i i j iF F j N

           (14) 
From the concept of Nash optimal, it is seen that 

each decision maker in a distributed system can only 
decide its own decision variables. A rational decision 
maker should choose the policy without affecting other 
decision makers. Because the decision results would 
affect each other, each decision maker could not 
change its decisions to get better performance of the 
system, then the system achieves equilibrium. 
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Algorithm: MSDHLA (Sk, Ak, pk, mk,n, mk,l, mk,c, e, g, Pk,HIS)

1: //Sk : set of all states in satk, Ak : set of all actions in satk,, pk : population size of satk,

2: //mk,n: node mutation rate, mk,l: connection mutation rate, mk,c: crossover rate,

3: //g: number of generations, Pk,HIS: history learned policy population, e: elite population size of satk,

4:

5: P[] Incremental history policy transfer learning (Sk, Ak, pk, Pk,HIS)
// create new population P based on history learned policy neural networks

6: for i 1 to g do

7:     for j 1 to pk do 

8:     ak,i argmax activation (P[j]), sk,i, ak,i                                    // select action with the highest activation
9:     P[j].fitness=TakeCollabrationAction (ak,i)                                      // calculate the fitness with other satellites’ actions

10:   P [] new array of size p                           // new array will store next generation

11:   P [] CHOOSE-ELITE-INDI (P[])                         // choose elite individuals from P

12: for j e to p do

13:   P [j]  ROULETTE-SELECTION ((P [])                                //select individual to mate in roulette way

14:   P [j+1] ROULETTE-SELECTION (P []) 

15:   with probability mk,n: ADD-NODE-MUTATION (P [j])                               //add node to new network

16:   with probability mk,l: ADD-CONNECTION-MUTATION (P [j+1])                                   //add connection to new network

17:   with probability mk,c: CROSSOVER (P [j], P [j+1])                                     //crossover with individuals

18: P[]  P [] 

Fig. 7  Pseudocode of MSDHLA. 

For the MSDTP, there is an implication in defini-
tion 1 that: each satellite optimizes his local policy 
under the assumption of the optimal of other satel-
lites in the process of local optimization have been 
given. Only in this way could the system get the 
Nash optimal. It is known that the fitness of policy 
neural network individual in each satellite is calcu-
lated with the best individuals of other satellite sub-
populations. Therefore, as long as each satellite con-
verges to its local optimal policy, the distributed sys-
tem could converge to the Nash optimal. 

Next, we just need to prove that the individuals in 
the policy neural network subpopulations could con-
verge to the optimal. 

Lemma 1 [25] Corresponding to general genetic 
algorithm with the finite homogeneous Markov 
chains, if the population keeps the best solution be-
fore selection operation in each generation, the ge-
netic algorithm converges to the optimal with prob-
ability 1. 

Theorem 1  In MACoNEAT, the policy neural 
network subpopulations of each satellite converge to 
each optimal of its own subpopulation with probabil-
ity 1. 

Proof  The framework of MACoNEAT shows 
that once the length of chromosome and number of 
subpopulations is determined and finite, both the 
individual space formed by all individuals and sub-
population space formed by subpopulations in each 
generation are finite. Because the parameters used in 
the algorithm do not change over time, and the state 
transition is not dependent on generation but on the 
selection, crossover, and mutation operators, MACo- 

NEAT is the one of the genetic algorithms with the 
finite homogeneous Markov chains. So it is known 
that MACoNEAT converges to optimal with the 
probability 1. The original proposition is proved. 

Therefore, the MSDHLA could converge to the 
Nash optimal. 

7. Experiments 

In order to test the performance of MSDHLA, we 
design some experiments as follows. The observation 
requests are randomly generated in different scales 
under uniform distribution and two-dimensional 
Gaussian distribution in the area of latitude 0 -60
and longitude 0 -180 . The utilities of tasks are ran-
dom integer in [umin, umax], umin=1, umax=3.

The algorithm simulates with 5 satellites. The time 
window of satellites for object observed is calculated 
by STK [26], and the details for the data set are given 
in Table 1, in which, SN means the serial number of 
test data, OR the number of objects, TR the number 
of time window generated according to each satellite, 
and DS the distribution scheme of the objects. For 
comparison, all satellites in the planning are pre-
sumed to have the same spatial resolution. 

The program of the algorithm is written by C#, 
whose compiler environment is Microsoft Visual 
Studio 2005, running on the PC with configuration of 
Pentium E5300 2.6 GHz, 2 GB RAM. Algorithm 
parameters used are as follows: maximum number of 
iterations MaxIter=100 000, the population sizes are 
PopSize=100. mn=0.6, ml=0.9, mc=0.8, c1=1.0, c2=1.0,
c3=2.0, t=3.0, =2.5, and =3.5.
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Table 1  Test data set 

SN OR TR DS 

PH120 30 55 NORMAL 

PH121 30 49 GAUSS 

PH122 30 61 RANDOM 

PH123 50 89 NORMAL 

PH124 50 114 GAUSS 

PH125 50 96 RANDOM 

PH126 200 495 NORMAL 

PH127 200 542 GAUSS 

PH128 200 955 RANDOM 

PH129 300 1 244 NORMAL 

PH130 300 1 613 GAUSS 

PH131 300 1 573 RANDOM 

PH131 300 1 573 RANDOM 

7.1. Comparison of experimental results 

The planning results of the three algorithms with-
out considering the conditions of history information 
of TL are compared under the condition of different 
scales and distributions of tasks. Where, nonstation-
ary converging policies (NSCP) is a cooperative al-
gorithm based on temporal difference reinforcement 
learning. ECNP is an extended algorithm of task dis-
tribution base on contract net protocol [27]. As shown 
in Fig. 8, whatever the condition of scale and distri-
bution of tasks is, the results of MACoNEAT are all 
superior to the other two algorithms. Under the con-
ditions of the large-scale task, example PH126- 

Fig. 8  Comparison of evaluation with different algo-
rithms. 

PH131, the advantages of MACoNEAT are more 
obvious. Due to a higher degree of multi-satellite 
potential collision for objects visited under the large- 
scale task, MACoNEAT adopts the method of solv-
ing the fitness for joint individuals of multi-popula-
tion to reduce the collisions re-visited by multi- 
satellite tasks, taking full advantage of relatively 
limited observation resources to gain the better 
planning results. 

7.2. Capability of algorithm improved by TL 

To test the improvement of algorithm by TL, two 
examples with different scales and distributions are 
divided into a group. The hybrid learning of IPSTL 
and MACoNEAT is adopted and the results are re-
corded, as shown in Table 2. 

Table 2  Comparison between MSDHLA and MACoNEAT in different combinations of test data 

MSDHLA MACoNEAT IMP/%
No. FIRST SECOND 

AVG MAX CPU/s TASK AVG MAX CPU/s TASK TIME EVA 

1 PH123      73.52  84.44    589.37      48.2      68.76      75.69    908.17      42.7      35.10       6.92 

2 PH124      83.26      89.4    615.9      55.4      83.73      87.2    962.45      55.2      36.01 0.56 

3 PH125      72.8    130.57    599.85      51.6      68.1      73.68    884.57      50.9      32.18       6.9 

4 PH129    216.96    221.38 1 196.45    117.5    211.32    212.4 1 378.9    116.7      13.23       2.67 

5 PH130    199.6    207.87 1 241.7    121.5    201.74    209.63 1 441.28    122.7      13.84 1.06 

6

PH120

PH131    227.85    231.92 1 139.93    155.4    229.17    235.77 1 374.94    159.1      17.09 0.58 

7 PH123      77.47      79.52    591.62      65.7      70.87      75.46    871.04      68.5      32.07       9.31 

8 PH124      82.89      89.45    612.98      64.9      77.52      80.11    992.44      74.4      38.23       6.93 

9 PH125      90.74    101.46    598.83      72.5      85.95      90.48 1 004.29      70.8      40.37       5.57 

10 PH129    187.46    190.2 1 089.45    108.4    188.52    194.1 1 314.32    110.8      17.10 0.56 

11 PH130    201.39    205.85 1 297.13    115.1    198.28    200.46 1 479.91    113.4      12.35       1.57 

12

PH121

PH131    219.47    223.67 1 124.67    122.3    219.56    225.77 1 403.4    125.1      19.86 0.04 

13 PH123      88.62      90.11    637.38      56.1      86.33      91.21    991.52      54.3      35.72       2.65 

14 PH124      76.79      87.14    621.62      48.8      75.46      79.98    948.06      46.8      34.43       1.76 

15 PH125      94.71      96.76    633.08      65.2      97.49      99.36    981.87      69.1      35.52 2.85 

16 PH129    197.76    200.47 1 235.75    106.8    195.14    199.57 1 524.73    104.9      18.95       1.34 

17 PH130    225.17    227.38 1 267.54    152.6    220.94    224.39 1 489.74    148.9      14.92       1.91 

18

PH122

PH131    213.79    215.6 1 194.51    116.5    213.1    218.5 1 338.16    116.2      10.73       0.32 
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Continued

MSDHLA MACoNEAT IMP/%
No. FIRST SECOND 

AVG MAX CPU/s TASK AVG MAX CPU/s TASK TIME EVA 

19 PH123    134.91    138.72    766.49      85.4    136.88    141.25 1 378.64      88.1      44.4 1.44 

20 PH124    148.16    152.31    787.22      89.2    149.16    155.6 1 422.98      91.2      44.68 0.67 

21 PH125    137.22    138.96    743.16      82.7    134.58    138.69 1 298.34      80.9      42.76       1.96 

22 PH129    341.84    362.17 1 625.38    223.8    337.1    344.48 3 137.58    217.5      48.2       1.411 

23 PH130    369.41    377.25 1 739.92    256.9    362.24    375.17 3 468.84    251.7      49.84       1.98 

24

PH123

PH131    352.14    359.64 1 688.43    239.4    345.63    354.01 3 257.12    230.4      48.16       1.88 

25 PH123    137.61    141.18    728.31      87.1    135.98    137.84 1 352.17      85.2      46.14       1.2 

26 PH124    142.89    148.35    747.14      90.5    144.91    148.58 1 398.44      91.4      46.57 1.39 

27 PH125    140.22    141.2    723.39      88.5    135.73    140.13 1 329.66      84.3      45.6       3.31 

28 PH129    343.51    350.6 1 583.42    235.9    347.26    356.21 3 284.94    240.6      51.8 1.08 

29 PH130    389.42    396.14 1 672.35    269.4    387.04    393.7 3 887.51    265.2      56.98       0.61 

30

PH124

PH131    367.58    372.63 1 627.45    248.9    380.16    385.14 3 741.23    254.6      56.5 3.31 

31 PH123    152.34    155.68    675.89      93.6    155.45    157.49 1 429.87      95.5      52.73 2.0 

32 PH124    160.77    168.21    715.46    106.7    157.36    164.23 1 567.62    103.3      54.36       2.17 

33 PH125    158.34    163.12    681.49      98.1    152.17    159.81 1 532.72      94.6      55.54       4.05 

34 PH129    371.85    379.46 1 425.94    252.6    367.45    374.49 3 621.59    248.3      60.63       1.2 

35 PH130    400.21    405.27 1 518.22    273.9    398.35    405.89 4 025.16    269.2      62.28       0.48 

36

PH125

PH131    386.42    392.13 1 584.26    264.8    391.24    402.54 3 871.64    277.5      59.08 1.23 

Notes: FIRST is the first example number, SECOND the second example number; AVG and MAX are separately the average value and the maximum 
value of results; CPU is the time of calculation (unit: s); TASK the quantity of average completion, IMP the increased ratio for comparison between 
MSDHLA and MACoNEAT, TIME the increased ratio for the time to reach the same threshold value of capability, and EVA the increased ratio of results. 

As shown in Table 2, the planning results are not 
significantly improved by comparing hybrid learning 
and MACoNEAT, and some examples are slightly 
lower, while the planning time of hybrid learning is 
obviously less than MACoNEAT among all examples 
of test. By analyzing any two examples of groups of 
all examples, it could be found that the calculation 
speed is accelerated obviously. The main reason is that 
the previous large-scale examples accumulate more 
cooperative planning information, compared with the 
following example. Thus, MSDHLA converges faster. 

It is seen that, compared with MACoNEAT, hybrid 
learning accelerates the convergence speed, especially, 
which is reflected more obviously when the scale of 
previous is larger than the following example. 

7.3. Evolution process of learning policy 

In order to further analyze the improvement of algo-
rithm performance enhanced by the transfer learning 
strategy of the algorithm, the evolutionary curve for 
the group of case PH127 and PH125 based on two 
algorithms is given in Section 6, as shown in Fig. 9. 
From the comparison between the evolutionary curves 
of two algorithms, the hybrid learning converts the 
learning policy of case PH127 to the follow-up groups, 

which not only improves the initial solution, but also 
takes the advantage that history learning information 
accelerates the learning rate of algorithm. Thus, the 
convergence speeds of hybrid learning are all faster 
than MACoNEAT in Table 2. 

Fig. 9  Evolutionary curves of two algorithms. 

7.4. Comparison of TL time in different policies 

To test the influence of different policies of TL, 
evolutionary generations, using three TL policies to 
perform all examples accumulatively and converge to 
the same threshold, are compared with those of 



· 504 · WANG Chong et al. / Chinese Journal of Aeronautics 24(2011) 493-505 No.4 

MACoNEAT. half, quarters and final mean 50 000 gen-
erations, 750 000 generations and 100 000 generations 
are respectively taken as history learning information 
to transfer. 

It could be seen from Fig. 10, quarters could get 
faster convergence speed than that of the other two 
transfer learning policies by taking quarters as the 
transfer learning policy. It suggests that learning his-
tory planning by using transfer policy is faced with the 
problems of insufficient learning and excessive learn-
ing. Thus, the selection for suitable transfer policy 
should be considered with specific problems. quarters is 
selected as transfer learning policy for MSDTP in this 
paper. 

Fig. 10  Comparison of running time with different transfer 
strategies. 

8. Conclusions and Future Works 

Considering the characteristic that task planning re-
quests occur randomly in multi-satellite dynamic task 
planning problem, a transfer learning strategy is intro-
duced to multi-agent reinforcement learning, and a 
multi-agent hybrid learning algorithm is proposed. The 
algorithm describes the learning policy by using neural 
network which is encoded in a chromosome. By aug-
menting network topologies, the learning policy is 
optimized iteratively. And the fitness of the individual 
in the population is calculated in a fitness sharing way, 
which avoids the observation redundancy and im-
proves the efficiency of resource utilization of satel-
lites.

For the stochastic incoming observation requests, 
TL takes full advantages of historical cooperative 
planning information, which not only guarantees the 
cooperative planning quality but also accelerates the 
learning speed. Examples verify that the proposed al-
gorithm in this paper is more suitable for the dynamic 
randomly occurring observation requests. 

The future work is to achieve the knowledge pro-
duced during the former multi-satellite cooperative 
task planning and to transfer them to the following 
task planning. Currently, our TL method just focuses 
on the action transference to accelerate the learning 
speed for emerging task using historical task planning 

results. However, the transfer learning is not only to 
simulate the action, but also to discover the knowledge 
and transfer them for the incoming cooperative plan-
ning. 
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