5 research outputs found
B20 Fuel Compatibility with Steels in Case of Fuel Contamination
This study evaluated the compatibility with steels for three B20 fuel samples blended from fossil diesel and used cooking oil methyl ester. One sample was untreated and its concentration of copper was analyzed as <1 ppm. Another sample was doped by adding Cu at a concentration of ≤2 ppm and the third sample by adding Cu at a concentration of ≤4 ppm. Steel samples (carbon steel, stainless steel and a special alloy) were then put into the fuel blends and stored at 50 °C for 692 h. After storing, the metal concentrations of the fuel blends were again analyzed, and signs of corrosion were evaluated visually. The aim of this study was to find out if the fuel already contaminated by copper will affect the corrosion of the chosen steel qualities. Additionally, fuel properties were measured for all three blend samples before the immersion of steels. Visual evaluation of the steels indicated that signs of corrosion were seen in all studied samples, but Cu doping did not increase the signs of corrosion notably. The results also showed that the copper content from 1 to 2 and 4 ppm reduced the oxidation stability and increased the acid number of the fuel samples.© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
Kaukolämmön erillistuotantoteknologioiden investointikustannusten vertailu : Tutkimus Kaskisten Energian kesäajan tarpeisiin
Ilmastonmuutoksen hillitsemiseksi yhteiskunnan on vähennettävä riippuvuuttaan fossiilisista polttoaineista ja siirryttävä vähäpäästöisiin energiantuotantomuotoihin. Lämmöntuotannolla on tärkeä rooli hiilineutraalin energiantuotannon saavuttamisessa. Tässä diplomityössä tutkittiin ja verrattiin useaa erilaista vaihtoehtoista taloudellista ja edullista hiilineutraalia lämmöntuotantoteknologiaa Kaskisten Energialle.
Tutkimuksen tavoitteena oli löytää eri vaihtoehtojen joukosta soveltuvin kesäajan kaukolämmön kesäajan erillistuotantomuoto Kaskisten Energialle. Tutkimuksessa verrattiin hakelämpöä, maalämpöä, merilämpöä, lämpöpumppujärjestelmää ja ilma-vesilämpöpumppua. Työssä esitellään tuotantomuodot ja niiden analyysit. Viiden vaihtoehdon kustannukset laskettiin projektin kokonaiskustannuksista saatujen hintatarjousten avulla. Kaikkien vaihtoehtojen kustannusanalyysi suoritetiin ”kustannusrivi”-menetelmiä käyttäen. Vaihtoehtojen kertakustannukset, kiinteät ja muuttuvat kustannukset analysoitiin. Lopullisessa vertailussa otettiin huomioon myös arvioitu 10 ja 15 vuoden takaisinmaksuaikana tuotetun energian hinta.
Tutkimuksen mukaan merilämmön ja Ilma-vesilämpöpumpun kaikki kustannukset ovat lähellä toisiaan. Lämpöpumppujärjestelmän investointikustannus on iso alussa, myös kymmenen ja viidentoista vuoden energiahinnat ovat kalliimmat kuin muiden laitoksien. Kaskisten Energian vaatimusten mukaan tutkimuksessa otettiin huomioon myös öljylämmityksen muuttuvat kustannukset, ja niitä verrattiin muihin vaihtoehtoihin. Tutkimuksen mukaan öljylämmityksen muuttuvat kustannukset ovat paljon korkeammat kuin hiilineutraalien energiantuotantolaitosten.
Työssä esitellään kustannusten ja tärkeiden energianhintaan vaikuttavien tekijöiden analyysi. Herkkyysanalyysiä käytetään tarkastelemaan, miten tärkeimmät tekijät vaikuttavat tuloksiin. Tarkastelun perusteella sähkön hinta ja lämpöpumpun lämpökerroin ovat erittäin tärkeitä tekijöitä, jotka vaikuttavat maalämmön, merilämmön, lämpöpumppujärjestelmän ja ilma-vesilämpöpumpun kustannuksiin.
Tutkimuksen perusteella ilma-vesilämpöpumppu on vaihtoehdoista sopivin Kaskisten Energian kesäajan kaukolämmön tuotantomuodoksi. Tulevaa hiilineutraalia kaukolämpöteknologiaa päivitetään jatkuvasti: kun otetaan huomioon eri vaihtoehtojen taloudellinen toteutettavuus, joustavuus ja optimointipotentiaali, tarvitaan lisää tutkimusta laajemmasta näkökulmasta.To curb climate change, society needs to reduce its dependence on fossil fuels and switch to low-emission forms of energy production. Heat production plays an important role in achieving carbon-neutral energy production. This dissertation researched and compared several different alternative economical and inexpensive carbon-neutral heat production technologies for Kaskisten Energia.
The aim of the study was to find the most suitable summertime district heating separate production form for Kaskisten Energia among the various alternatives. The study compared wood chip heat, geothermal, sea heat, a heat pump system, and an air-to-water heat pump. The work presents the individual production forms and their analyzes. The costs of the five options were calculated using the bids received from the total cost of the project. The cost analysis of all alternatives was performed using “cost line” methods. The one-time, fixed, and variable costs of the alternatives were compared and analyzed. The final comparison also considered the estimated price of energy produced during the 10- and 15-year payback periods.
According to the study, all the costs of sea heat and an air-to-water heat pump are close to each other. The investment cost of a heat pump system is big in the beginning, also the ten and fifteen-year energy price are more expensive than other plants. According to Kaskisten Energia's requirements, the research also considered the variable costs of oil heating and compared them with other alternatives. According to the study, the variable costs of oil heating are much higher than those of carbon-neutral energy production plants.
The paper presents an analysis of important factors influencing costs and energy prices. Sensitivity analysis was used to look at the effects of important influencing factors on the results. Based on the review, the price of electricity and the heat factor of the pump are very important factors affecting the costs of geothermal, marine heat, heat pump system and air-to-water heat pump.
Based on the results, the air-to-water heat pump is the most suitable of the alternatives as a form of summer district heating production by Kaskisten Energia. Future carbon-neutral district heating technology is constantly being updated: given the economic feasibility, flexibility and optimization potential of the different options, more research is needed from a broader perspective
FTIR Analysis for Determining Stability of Methanol–HVO Blends for Non-Road Engine Application
The Green Deal targets, along with tightening emissions legislation, foster research on alternative propulsion systems. In non-road mobile machinery (NRMM), these efforts largely rally around sustainable fuels while keeping the benefits of energy security (multi-fueling) high. In this context, the blends of Hydrogenated Vegetable Oil (HVO) and Methanol (MEOH) are amongst the most promising yet under-researched alternatives and, as such, need dedicated methods for determining their suitability in engine applications. In this paper, we evaluate the feasibility of Fourier transform infrared (FTIR) analytics for determining the stability of MEOH-HVO mixtures. The research considers temperature effects during storage by conditioning the test samples at −20 °C and +20 °C. The stability of the blends and different co-solvents is analysed after six weeks, and FTIR spectra are used to identify the chemical bonds. From FTIR analysis, blending MEOH20 with 1-dodecanol results in stable homogenous alkyl-ether fuels, while the MEOH20 blend with methyl-butyrate results in ester fuels. There are observable differences in the blend samples according to their storage temperatures. In conclusion, both fuel blend samples formed different fuel types, which are stable and homogenous at room temperature, posing great potential for their applicability in different NRMM types.© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
Compatibility of Methanol-Hydrotreated Vegetable Oil Blends with Chosen Steels and Aluminum
Methanol and hydrotreated vegetable oil (HVO) are complementary in the context of achieving ultra-low emission levels via low temperature combustion. HVO is a high-quality fuel fully compatible with compression ignition engines. Standalone methanol combustion is relatively straight-forward according to the Otto principle, with a spark ignited or in conventional dual-fuel (“liquid spark”) engines. These two fuels have by far the largest reactivity span amongst commercially available alternatives, allowing to secure controllable partially premixed compression ignition with methanol–HVO emulsification. This study investigates the corrosion of aluminum, carbon steel, stainless steel, and a special alloy of MoC210M/25CrMo4+SH, exposed to different combinations of HVO, HVO without additives (HVOr), methanol, and emulsion stabilizing additives (1-octanol or 1-dodecanol). General corrosive properties are well determined for all these surrogates individually, but their mutual interactions have not been researched in the context of relevant engine components. The experimental research involved immersion of metal samples into the fuels at room temperature for a duration of 60 days. The surfaces of the metals were inspected visually and the dissolution of the metals into fuels was evaluated by analyzing the fuels’ trace metal concentrations before and after the immersion test. Furthermore, this study compared the alterations in the chemical and physical properties of the fuels, such as density, kinematic viscosity, and distillation properties, due to possible corrosion products. Based on these results, methanol as 100% fuel or as blending component slightly increases the corrosion risk. Methanol had slight dissolving effect on aluminum (dissolving Al) and carbon steel (dissolving Zn). HVO, HVOr, and methanol–HVOr–co-solvents were compatible with the metals. No fuels induced visible corrosion on the metals’ surfaces. If corrosion products were formed in the fuel samples, they did not affect fuel parameters
Properties of Chemically Stabilized Methanol–HVO Blends
Approximately 25% of global carbon emissions come from food production. Renewable fuels are crucial for curbing greenhouse gas (GHG) emissions from vehicles, non-road machines, and agricultural machinery. Tractors, key to modern farming, are central to these efforts. As agriculture strives for sustainability, alternative fuels like methanol and hydrotreated vegetable oil (HVO) are arousing interest because they are renewable and offer potential for blending for use in diesel engines. Methanol and HVO have limited solubility in direct mixing, so the addition of a co-solvent is essential. This study addresses the research gap regarding the properties of HVO and methanol blends with co-solvents. It investigated the impact of three co-solvents, 1-dodecanol, 1-octanol, and methyl butyrate, on the miscibility of HVO and methanol. The experimental measurements cross-varied the co-solvent type with different blending ratios (MeOH5 and MeOH10). Investigated parameters include fuel density, kinematic viscosity, distillation properties, and surface tension. The co-solvents enabled the formation of a singular, clear, and homogeneous phase in methanol-HVO blends. The co-solvent 1-dodecanol demonstrated the highest solubilizing capacity for MeOH5 and MeOH10 blends, followed by 1-octanol. Adding co-solvents led to increased fuel density, decreased kinematic viscosity, and small changes in surface tension. These findings contribute to the optimization of methanol–HVO fuel blends for efficient and environmentally friendly use in vehicles, non-road machinery, and agricultural machinery.© 2024 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed