149 research outputs found

    SOCIALLY DESIRABLE RESPONDING IN CHINESE UNIVERSITY STUDENTS: DENIAL AND ENHANCEMENT?

    Get PDF
    This study examined the Balanced Inventory of Desirable Responding (BIDR) with one-, two-, three-, and four-dimensional models and tested the BIDR's discriminant validity with personality variables. A confirmatory and exploratory factor analysis of responses from 600 Chinese university students (314 men, 282 women, 4 missing; M age = 20.0 yr.) provided results indicating that the four-factor model fit the data best; i.e., self-deception and impression management split into denial and enhancement. The Denial and Enhancement subscales with personality variables show significant differences, confirming the four-factor model. The cultural differences as a possible reason for the split were discussed

    New construction of Boolean functions with maximun algebraic immunity

    Get PDF
    Because of the algebraic attacks, a high algebraic immunity is now an important criteria for Boolean functions used in stream ciphers. In this paper, by using the relationship between some flats and support of a n variables Boolean function f, we introduce a general method to determine the algebraic immunity of a Boolean function and finally construct some balanced functions with optimum algebraic immunity

    Composition construction of new bent functions from known dually isomorphic bent functions

    Get PDF
    Bent functions are optimal combinatorial objects and have been studied over the last four decades. Secondary construction plays a central role in constructing bent functions since it may generate bent functions outside the primary classes of bent functions. In this study, we improve a theoretical framework of the secondary construction of bent functions in terms of the composition of Boolean functions. Based on this framework, we propose several constructions of bent functions through the composition of a balanced Boolean function and dually isomorphic (DI) bent functions defined herein. In addition, we present a construction of self-dual bent functions

    New construction of single-cycle T-function families

    Get PDF
    The single cycle T-function is a particular permutation function with complex algebraic structures, maximum period and efficient implementation in software and hardware. In this paper, on the basis of existing methods, we present a new construction using a class of single cycle T-functions meeting certain conditions to construct a family of new single cycle T-functions, and we also give the numeration lower bound for the newly constructed single cycle T- functions

    Construction and Filtration of Lightweight Formalized MDS Matrices

    Get PDF
    The 4x4 MDS matrix over F2 is widely used in the design of block cipher\u27s linear diffusion layers. However, considering the cost of a lightweight cipher\u27s implementation, the sum of XOR operations of a MDS matrix usually plays the role of measure. During the research on the construction of the lightweight 4x4 MDS matrices, this paper presents the concept of formalized MDS matrix: some of the entries that make up the matrix are known, and their positions are determined, and the criterions of the MDS matrix is satisfied. In this paper, using the period and minimal polynomial theory of entries over finite fields, a new construction method of formalized MDS matrices is proposed. A large number of MDS matrices can be obtained efficiently by this method, and their number distribution has significant structural features. However, the algebraic structure of the lightest MDS matrices is also obvious. This paper firstly investigates the construction of 4x4 lightweight MDS matrices, analyzes the distribution characteristics of the them, and the feasibility of the construction method. Then, for the lightest MDS matrices obtained from the method above, the algebraic relations in themselves and between each other are studied, and the important application of the alternating group A4 and it\u27s subgroup, the Klein four-group is found

    The Improved Cube Attack on Grain-v1

    Get PDF
    The crucial problem of cube attack is the selection of cube set, which also being the most time-consuming process. This paper designs a new search algorithm which generates several linear equations through one cube set and applies cube attack to simplified version of Grain-v1algorithem. Our attack directly recovers 14 bits of the secret key when the initialization rounds in Grain-v1is 75 and finds 5 linear expressions about another 28 bits of the key

    New construction of single cycle T-function families

    Get PDF
    The single cycle T-function is a particular permutation function with complex algebraic structures, maximum period and efficient implementation in software and hardware. In this paper, on the basis of existing methods, by using a class of single cycle T-functions that satisfy some certain conditions, we first present a new construction of single cycle T-function families. Unlike the previous approaches, this method can construct multiple single cycle T-functions at once. Then the mathematical proof of the feasibility is given. Next the numeration for the newly constructed single cycle T-functions is also investigated. Finally, this paper is end up with a discussion of the properties which these newly constructed functions preserve, such as linear complexity and stability (k-error complexity), as well as a comparison with previous construction methods

    Linear Extension Cube Attack on Stream Ciphers

    Get PDF
    Basing on the original Cube attack, this paper proposes an improved method of Cube attack on stream ciphers, which makes improvement on the pre-processing phase of the original attack. The new method can induce maxterms of higher-order from those of lower-order by the trade-off between time and space, thus recovering more key bits and reducing the search complexity on higher-dimension. In this paper, the improved attack is applied to Lili-128 algorithm and reduced variants of Trivium algorithm. We can recover 88 key bits of Lili-128 algorithm within time complexity of 2^14 and 48 key bits of Trivium algorithm can be recovered by cubes with dimension no larger than 8 when the initialization round is 576, the results are much better than those of the original attacks

    Efficient Framework for Genetic-Algorithm-Based Correlation Power Analysis

    Get PDF
    Various Artificial Intelligence (AI) techniques are combined with classic side-channel methods to improve the efficiency of attacks. Among them, Genetic Algorithms based Correlation Power Analysis (GA-CPA) is proposed to launch attacks on hardware cryptosystems to extract the secret key efficiently. However, the convergence rate is unsatisfactory due to two problems: individuals of the initial population generally have low fitnesses, and the mutation operation is hard to generate high-quality components. In this paper, we give an analysis framework to solve them. Firstly, we employ lists of sorted candidate key bytes obtained with CPA to initialize the population with high quality candidates. Secondly, we guide the mutation operation with lists of candidate keys sorted according to fitnesses, which are obtained by exhausting the values of a certain key byte and calculating the corresponding correlation coefficients with the whole key. Thirdly, key enumeration algorithms are utilized to deal with ranked candidates obtained by the last generation of GA-CPA to improve the success rate further. Simulation experimental results show that our method reduces the number of traces by 33.3\% and 43.9\% compared to CPA with key enumeration and GA-CPA respectively when the success rate is fixed to 90\%. Real experiments performed on SAKURA-G confirm that the number of traces required in our method is much less than the numbers of traces required in CPA and GA-CPA. Besides, we adjust our method to deal with DPA contest v1 dataset, and achieve a better result of 40.76 traces than the winning proposal of 42.42 traces. The computation cost of our proposal is nearly 16.7\% of the winner
    corecore