191 research outputs found
High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid
Reduced graphene oxide-nanocrystalline platinum (RGO-Pt) hybrid materials were synthesized by simultaneous co-reduction of graphene oxide (GO) and chloroplatinic acid with sodium citrate in water at 80°C, of pH 7 and 10. The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10). The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values. The Pt loadings for the hybrid materials were determined as 36.83 (pH 7) and 49.18% (pH 10) by mass using XPS analysis. With the assistance of oleylamine, the resultant RGO-Pt hybrid materials were soluble in the nonpolar organic solvents, and the dispersion could remain stable for several months
Recent Advances in Multi-modal 3D Scene Understanding: A Comprehensive Survey and Evaluation
Multi-modal 3D scene understanding has gained considerable attention due to
its wide applications in many areas, such as autonomous driving and
human-computer interaction. Compared to conventional single-modal 3D
understanding, introducing an additional modality not only elevates the
richness and precision of scene interpretation but also ensures a more robust
and resilient understanding. This becomes especially crucial in varied and
challenging environments where solely relying on 3D data might be inadequate.
While there has been a surge in the development of multi-modal 3D methods over
past three years, especially those integrating multi-camera images (3D+2D) and
textual descriptions (3D+language), a comprehensive and in-depth review is
notably absent. In this article, we present a systematic survey of recent
progress to bridge this gap. We begin by briefly introducing a background that
formally defines various 3D multi-modal tasks and summarizes their inherent
challenges. After that, we present a novel taxonomy that delivers a thorough
categorization of existing methods according to modalities and tasks, exploring
their respective strengths and limitations. Furthermore, comparative results of
recent approaches on several benchmark datasets, together with insightful
analysis, are offered. Finally, we discuss the unresolved issues and provide
several potential avenues for future research
Construction of trace element in coal of China Database Management System: based on WebGIS
The combination of geographic information system and mineral energy data management is helpful to promote the study of mineral energy and its ecological damage and environmental pollution caused by its development and utilization, which has important application value. The Trace Elements in Coal of China Database Management System (TECC) is established in this paper, applying the techniques of B/S three-layer structure, Oracle database, AJAX and WebGIS. TECC is the first database system which aims at managing the data of trace elements in coal in China. It includes data management and analysis module, document management module, trace elements in coal data maintenance module and authority management module. The data entry specification is put forward in the present study and the spatial data is included in TECC system. The system achieves the functions of data query, analysis, management, maintenance and map browsing, thematic map drawing as well as satellite video display, which lay the foundation for the analysis of large data of trace elements in coal. It is a practical platform for the acquisition, management, exchange and sharing of trace element research and geochemical research data of coal
Wireless powered communication networks using peer harvesting
For an energy-constrained wireless network, energy harvesting (EH) is a promising technology to prolong the network life. Whether traditional near-field wireless power transfer (WPT) using inductive and resonant coupling or far-field WPT via radiated electromagnetic waves, both of them draw considerable research interests these years [1], [2]. In particular, the far-field WPT is meaningful for wireless powered communication (WPC) networks. A fundamental tradeoff was first studied for simultaneous wireless information and power transfer (SWIPT) in [3], [4]. These results aroused the interest of researchers. Subsequently, wireless communication with EH technology was presented in [5], [6]
- …