81 research outputs found

    InAs/AlSb Based Mid-Infrared QCL Growth and XRD Simulation

    Get PDF
    In the past two decades, mid-infrared (MIR) quantum cascade laser (QCL) research has been rapidly developed and has resulted in an enabling platform for the remote sensing and metrology. QCL is designed by spatial confinement in quantum well structures on a nanometer scale, enabling the transitions between the electron confined states. In order to obtain the particular characteristics via quantum engineering, the material growth needs to be precisely controlled across the large number of layers. In this work, the growth condition of InAs/AlSb based MIR-QCL, grown by molecular beam epitaxy (MBE), is investigated. A low defect density growth result is observed by employing the optimized growth condition. Laser devices with disk mesa or ridge waveguide are fabricated, and the further electrical characterization exhibits the device lasing at 3.4 μm with a threshold current density of around 2.1 kA/cm2. The superlattice average layer thickness is determined by using high resolution X-ray diffraction (HRXRD), which is considered as one of the non-destructive analysis technique to extract the information about the thin film constructions. Comprehensive modeling built and simulation results are analyzed and discussed based on the HRXRD ω-2θ scanning curve, yielding valuable information about the full structure device growth result. The interface related simulations are performed by using RADS software to investigate the relationship between the strain distribution and the relative intensities of the SL reflections in XRD

    The Association Between STAT4 rs7574865 Polymorphism and the Susceptibility of Autoimmune Thyroid Disease: A Meta-Analysis

    Get PDF
    Objectives: The signal transducer and activator of transcription 4 (STAT4) gene encodes an important transcription factor that transmits signals induced by several cytokines associated with autoimmune diseases and has been identified as a susceptibility gene for numerous autoimmune disorders. The association between STAT4 rs7574865 polymorphism and the susceptibility of autoimmune thyroid disease (AITD) has been investigated in previous case-control studies. However, the investigation results were inconsistent. Hence, a meta-analysis was performed to draw a more reliable conclusion about it.Methods: All relevant studies were searched in Embase, PubMed, Web of Science, and China National Knowledge Infrastructure, till August 20, 2018. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the association.Results: A total of five independent case-control studies with 1707 AITD patients and 2316 controls were included in the present meta-analysis. The overall pooled analysis indicated that STAT4 rs7574865 polymorphism was significantly associated with AITD susceptibility [TT vs. GG: OR = 1.63, 95%CI = 1.24–2.15, PZ = 0.0005; TT vs. (TG+GG): OR = 1.55, 95%CI = 1.26–1.91, PZ < 0.0001]. However, the subgroup analysis showed a significant association of STAT4 rs7574865 polymorphism with AITD susceptibility in Asian population, but not in African population. STAT4 rs7574865 polymorphism was significantly associated both with Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) susceptibility.Conclusion: This meta-analysis showed a significant association between STAT4 rs7574865 polymorphism and AITD susceptibility. However, further studies with larger sample sizes and other ethnicities are still required to confirm the findings

    Demonstration of chronometric leveling using transportable optical clocks beyond laser coherence limit

    Full text link
    Optical clock network requires the establishment of optical frequency transmission link between multiple optical clocks, utilizing narrow linewidth lasers. Despite achieving link noise levels of 10−20{^{-20}}, the final accuracy is limited by the phase noise of the clock laser. Correlation spectroscopy is developed to transmit frequency information between two optical clocks directly, enabling optical clock comparison beyond the phase noise limit of clock lasers, and significantly enhancing the measurement accuracy or shorten the measurement time. In this letter, two compact transportable 40{^{40}}Ca+{^+} clocks are employed to accomplish the correlation spectroscopy comparison, demonstrating an 10 cm level measurement accuracy of chronometric leveling using a mediocre clock laser with linewidth of 200 Hz. The relative frequency instability reaches 6.0×10−15/τ/s6.0\times10{^{-15}}/\sqrt{\tau/s}, which is about 20 times better than the result with Rabi spectroscopy using the same clock laser. This research greatly reduces the harsh requirements on the performance of the clock laser, so that an ordinary stable-laser can also be employed in the construction of optical clock network, which is essential for the field applications, especially for the chronometric leveling

    Flexible Nanopaper Composed of Wood-Derived Nanofibrillated Cellulose and Graphene Building Blocks

    Get PDF
    Nanopaper has attracted considerable interest in the fields of films and paper research. However, the challenge of integrating the many advantages of nanopaper still remains. Herein, we developed a facile strategy to fabricate multifunctional nanocomposite paper (NGCP) composed of wood-derived nanofibrillated cellulose (NFC) and graphene as building blocks. NFC suspension was consisted of long and entangled NFCs (10–30 nm in width) and their aggregates. Before NGCP formation, NFC was chemically modified with a silane coupling agent to ensure that it could interact strongly with graphene in NGCP. The resulting NGCP samples were flexible and could be bent repeatedly without any structural damage. Within the NGCP samples, the high aspect ratio of NFC made a major contribution to its high mechanical strength, whereas the sheet-like graphene endowed the NGCP with electrical resistance and electrochemical activity. The mechanical strength of the NGCP samples decreased as their graphene content increased. However, the electrical resistance and electrochemical activity of the NGCP samples both rose with increasing content of graphene. The NGCPs still kept advantageous mechanical properties even at high temperatures around 300°C because of the high thermal stability of NFCs and their strong entangled web-like structures. In view of its sustainable building blocks and multifunctional characteristics, the NGCP developed in this work is promising as low-cost and high-performance nanopaper

    Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder

    Get PDF
    Autism spectrum disorder (ASD) is a group of clinically and genetically heterogeneous neurodevelopmental disorders. Recent tremendous advances in the whole exome sequencing (WES) enable rapid identification of variants associated with ASD including single nucleotide variations (SNVs) and indels. To further explore genetic etiology of ASD in Chinese children with negative findings of copy number variants (CNVs), we applied WES in 80 simplex families with a single affected offspring with ASD or suspected ASD, and validated variations predicted to be damaging by Sanger sequencing. The results showed that an overall diagnostic yield of 8.8% (9.2% in the group of ASD and 6.7% in the group of suspected ASD) was observed in our cohort. Among patients with diagnosed ASD, developmental delay or intellectual disability (DD/ID) was the most common comorbidity with a diagnostic yield of 13.3%, followed by seizures (50.0%) and craniofacial anomalies (40.0%). All of identified de novo SNVs and indels among patients with ASD were loss of function (LOF) variations and were slightly more frequent among female (male vs. female: 7.3% vs. 8.5%). A total of seven presumed causative genes (CHD8, AFF2, ADNP, POGZ, SHANK3, IL1RAPL1, and PTEN) were identified in this study. In conclusion, WES is an efficient diagnostic tool for diagnosed ASD especially those with negative findings of CNVs and other neurological disorders in clinical practice, enabling early identification of disease related genes and contributing to precision and personalized medicine

    Unmasking test for multiple upper or lower outliers in normal samples

    No full text
    The discordancy test for multiple outliers is complicated by problems of masking and swamping. The key to the settlement of the question lies in the determination of k , i.e. the number of 'contaminants' in a sample. Great efforts have been made to solve this problem in recent years, but no effective method has been developed. In this paper, we present two ways of determining k , free from the effects of masking and swamping, when testing upper (lower) outliers in normal samples. Examples are given to illustrate the methods.

    Selecting the best regression equation via the P-value of F-test

    No full text
    Regression, F-statistic, Selection of variables, P-value,
    • …
    corecore