198,410 research outputs found

    Domain wall propagation due to the synchronization with circularly polarized microwaves

    Full text link
    Finding a new control parameter for magnetic domain wall (DW) motion in magnetic nanostructures is important in general and in particular for the spintronics applications. Here, we show that a circularly polarized magnetic field (CPMF) at GHz frequency (microwave) can efficiently drive a DW to propagate along a magnetic nanowire. Two motion modes are identified: rigid-DW propagation at low frequency and oscillatory propagation at high frequency. Moreover, DW motion under a CPMF is equivalent to the DW motion under a uniform spin current in the current perpendicular to the plane magnetic configuration proposed recently by Khvalkovskiy et al. [Phys. Rev. Lett. 102, 067206 (2009)], and the CPMF frequency plays the role of the current

    Strangeness Production in Chemically Non-Equilibrated Parton Plasma

    Get PDF
    Strangeness production was investigated during the equilibration of a gluon dominated parton plasma produced at RHIC and LHC energies. The time evolution of parton densities are followed by a set of rate equations in a 1-dimensional expanding system. The strangeness production will depend on the initial chemical equilibration level and in our case the parton densities will remain far from the full equilibrium. We investigate the influence of gluon fragmentation on final strangeness content.Comment: 12 pages (LaTeX) + 2 postscript figures (tarred, compressed, uuencoded) included. Review to appear in Proceedings of Strangeness'95, Tucson, Arizona, Jan. 4--6 1995. (American Institute of Physics

    Spin-depedent transmission of holes through periodically modulated diluted magnetic semiconductor waveguides

    Full text link
    We study spin transport of holes through stubless or stubbed waveguides modulated periodically by diluted magnetic semiconductor (DMS) sections of width b1 . Injected holes of up (down) spin feel a periodically modulated barrier (well) potential in the DMS sections and have different transmission (T) coefficients. T oscillates with b1 for spin-down and decreases fast for spin-up holes while the relative polarization Pr depends nearly periodically on the stub height. Using asymmetric stubs leads to a nearly square-wave pattern in T and to wide plateaus in Pr . T oscillates with the length between the DMS sections. With two DMS sections per unit, T shows periodically wide gaps for spin-down holes when a DMS width is varied. The results can be used to create efficient spin filters.Comment: 5figure

    Spin-dependent transmission in waveguides with periodically modulated strength of the spin-orbit interaction

    Full text link
    The electron transmission TT is evaluated through waveguides, in which the strength of the spin-orbit interaction(SOI) α\alpha is varied periodically, using the transfer-matrix technique. It is shown that TT exhibits a {\it spin-transistor} action, as a function of α\alpha or of the length of one of the two subunits of the unit cell, provided only one mode is allowed to propagate in the waveguide. A similar but not periodic behavior occurs as a function of the incident electron energy. A transparent formula for TT through one unit is obtained and helps explain its periodic behavior. The structure considered is a good candidate for the establishment of a realistic spin transistor

    Cell sleeping for energy efficiency in cellular networks: Is it viable?

    Get PDF
    An approach advocated in the recent literature for reducing energy consumption in cellular networks is to put base stations to sleep when traffic loads are low. However, several practical considerations are ignored in these studies. In this paper, we aim to raise questions on the feasibility and benefits of base station sleeping. Specifically we analyze the interference and capacity of a coverage-based energy reduction system in CDMA based cellular networks using a simple analytical model and show that sleeping may not be a feasible solution to reduce energy consumption in many scenarios. © 2012 IEEE
    corecore