24,770 research outputs found

    Microwave Slow-Wave Structure and Phase-Compensation Technique for Microwave Power Divider

    Get PDF
    In this paper, T-shaped electromagnetic bandgap is loaded on a coupled transmission line itself and its electric performance is studied. Results show that microwave slow-wave effect can be enhanced and therefore, size reduction of a transmission-line-based circuit is possible. However, the transmission-line-based circuits characterize varied phase responses against frequency, which becomes a disadvantage where constant phase response is required. Consequently, a phase-compensation technique is further presented and studied. For demonstration purpose, an 8-way coupled-line power divider with 22.5 degree phase shifts between adjacent output ports, based on the studied slow-wave structure and phase-compensation technique, is developed. Results show both compact circuit architecture and improved phase imbalance are realized, confirming the investigated circuit structures and analyzing methodologies

    A rationally designed rhodamine-based fluorescent probe for molecular imaging of peroxynitrite in live cells and tissues

    Get PDF
    published_or_final_versio

    Enhancing simultaneous response and amplification of biosensor in microbial fuel cell-based upflow anaerobic sludge bed reactor supplemented with zero-valent iron

    Full text link
    © 2017 Elsevier B.V. The development of a convenient and sensitive sensor such as a microbial fuel cell (MFC) to monitor the operation of upflow anaerobic sludge blanket (UASB) is indispensable. However, the biosensor's properties were affected due to excessive acidification and suffocation of the electron transport. In this study, zero-valent iron (ZVI) was applied to restrain excessive acidification and improve the sensing performance. According to the results, the response rate of electrical signal accumulated with the addition of ZVI compared to the control reactor. As well as the electrical signal amplified and the subsidence rate maximum reached 0.059 V/h with 30 mg/L ZVI added that 883% higher than the control one during the stage (COD concentration 500 mg/L–1000 mg/L). With the electrochemical analysis, the internal resistance of ZVI-UASB-MFC decreased and redox activity promoted effectively with ZVI added. During the overloading phase, the fractional content of butyric acid changed from 53% to 31%, while that of acetic acid rose from 18% to 39% after 30 mg/L ZVI addition. These results indicated that adding ZVI to the digestion could retard excessive acidification by promoting butyric acid conversion and accumulating direct interspecies electron transfer simultaneous for enhancing the biosensor's performance. According to the Fe2+ and Fe3+ of effluent were 2.25 mg/L and 0.39 mg/L with 50 mg/L ZVI addition, moderate amount of ZVI was effective for system and safety to the environment. It might helpfully provide a promising way to enhance biosensing

    Heteroepitaxial Growth and Multiferroic Properties of Mn-doped BiFeO3 films on SrTiO3 buffered III-V Semiconductor GaAs

    Full text link
    Epitaxial Mn-doped BiFeO3 (MBFO) thin films were grown on GaAs (001) substrate with SrTiO3 (STO) buffer layer by pulsed laser deposition. X-ray diffraction results demonstrate that the films show pure (00l) orientation, and MBFO(100)//STO(100), whereas STO (100)//GaAs (110). Piezoresponse force microscopy images and polarization versus electric field loops indicate that the MBFO films grown on GaAs have an effective ferroelectric switching. The MBFO films exhibit good ferroelectric behavior (2Pr ~ 92 {\mu}C/cm2 and 2EC ~ 372 kV/cm). Ferromagnetic property with saturated magnetization of 6.5 emu/cm3 and coercive field of about 123 Oe is also found in the heterostructure at room temperature.Comment: 19 pages, 4 figure

    Research on logarithmic spiral roll profile in hot rolling

    Get PDF
    Presented is a new logarithmic spiral roll profile for 2-high hot rolling,and successfully establishing the logarithmic spiral roll profile equation.The inherent benefits over traditional sine curve roll profile include control of rolling force and optimization of strip profile.Comparison of rolling force and strip profile produced by logarithmic spiral rollers with that produced using traditional sine curve rollers through three-dimensional finite element simulation also verifies the new roll profile is more prominent in reducing rolling force and optimizing strip profile than traditional sine curve roll profile

    Investigation of backwashing effectiveness in membrane bioreactor (MBR) based on different membrane fouling stages

    Full text link
    © 2018 Elsevier Ltd In this study the effect of different fouling stages of hollow fiber membranes on effective backwashing length in MBR has been investigated. Computational fluid dynamics (CFD) is imported to simulate backwashing process. A multi-physics coupling model for free porous media flow, convective mass transfer and diluted species transport was established. The laser bijection sensors (LBS) were imported to monitor the backwashing solution position inside fiber lumen. Simulation results indicated that membrane fouling degree could change the velocity of backwash solution inside fiber lumen and make a further effect on effective backwash length. The signal variations of LBS are in accordance with the simulation results. The backwashing process can only play an active role when the filtration pressure is below the critical TMP. It can be concluded that backwash duration in industrial applications need to be set based on changes in TMP

    Intrinsic Percolative Superconductivity in KxFe2-ySe2 Single Crystals

    Full text link
    Magnetic field penetration and magnetization hysteresis loops (MHLs) have been measured in KxFe2-ySe2 single crystals. The magnetic field penetration shows a two-step feature with a very small full-magnetic-penetration field (Hp1= 300 Oe at 2 K), and accordingly the MHL exhibits an abnormal vanishing of the central peak near zero field below 13 K. The width of the MHL in KxFe2-ySe2 at the same temperature is in general much smaller than that measured in the relatives Ba0.6K0.4Fe2As2 and Ba(Fe0.92Co0.08)2As2, and the MHLs in the latter two samples show the normal central peak near zero field. All these anomalies found in KxFe2-ySe2 can be understood in the picture that the sample is percolative with weakly coupled superconducting islands.Comment: 5 page, 4 figure

    Research on logarithmic spiral roll profile in hot rolling

    Get PDF
    Presented is a new logarithmic spiral roll profile for 2-high hot rolling,and successfully establishing the logarithmic spiral roll profile equation.The inherent benefits over traditional sine curve roll profile include control of rolling force and optimization of strip profile.Comparison of rolling force and strip profile produced by logarithmic spiral rollers with that produced using traditional sine curve rollers through three-dimensional finite element simulation also verifies the new roll profile is more prominent in reducing rolling force and optimizing strip profile than traditional sine curve roll profile
    corecore