26 research outputs found
Pituitary stalk changes on magnetic resonance imaging following pituitary adenoma resection using a transsphenoidal approach
ObjectiveWe aimed to investigate the magnetic resonance imaging (MRI) findings and clinical significance of position and changes in morphology of the pituitary stalk following pituitary adenoma (PA) resection using a transsphenoidal approach.MethodsWe collected clinical and MRI data of 108 patients with PA after transsphenoidal surgery. Diameter, length, and coronal deviation of the pituitary stalk were measured pre-, post-, and mid-term post-operatively, to observe pituitary stalk morphology.ResultsOf 108 patients, 53 pituitary stalks were recognisable pre-operatively. The angle between the pituitary stalk and the median line was 7.22°-50.20° (average, 25.85°) in 22 patients with left-sided pituitary stalks and 5.32°-64.05° (average, 21.63°) in 20 patients with right-sided pituitary stalks. Of 42 patients with preoperative pituitary stalk deviation, 41 had an early postoperative recovery and 1 had increased deviation. In the mid-term postoperative period, 21 of 42 patients had pituitary stalks located centrally. In 53 patients, the pituitary stalk length was 1.41–11.74 mm (mean, 6.12 mm) pre-operatively, 3.61–11.63 mm (mean, 6.93 mm) in the early postoperative period, and 5.37–17.57 mm (mean, 8.83 mm) in the mid-term postoperative period. In the early postoperative period, 58 (53.70%) patients had posterior pituitary bright spots (PPBS) and 28 (25.92%) had diabetes insipidus (DI).ConclusionPre-operatively, the pituitary stalk was compressed and thinned. Post-operatively, it could be stretched to a “normal state”, and its position showed a gradual centring trend. Post-operatively, the length of the pituitary stalk gradually increased. The PPBS in the early postoperative period negatively correlated with postoperative DI
Identification of differentially expressed microRNAs and the potential of microRNA-455-3p as a novel prognostic biomarker in glioma.
Glioma is an aggressive central nervous system malignancy. MicroRNAs (miRNAs/miRs) have been reported to be involved in the tumorigenesis of numerous types of cancer, including glioma. The present study aimed to identify the differentially expressed miRNAs in glioma, and further explore the clinical value of miR-455-3p in patients with glioma. GEO2R was used for the identification of the differentially expressed miRNAs according to the miRNA expression profiles obtained from the Gene Expression Omnibus database. OncomiR was used to analyze the relationship of miRNAs with the survival outcomes of the patients with glioma. A total of 108 patients with glioma were recruited to examine the expression levels of miR-455-3p and further explore its clinical value. The bioinformatics analysis results suggested that a total of 64 and 48 differentially expressed miRNAs were identified in the GSE90603 and GSE103229 datasets, respectively. There were 12 miRNAs in the overlap of the two datasets, of which three were able to accurately predict overall cancer survival, namely hsa-miR-7-5p, hsa-miR-21-3p and hsa-miR-455-3p. In patients with glioma, miR-455-3p was determined to be significantly upregulated (P<0.001). Additionally, patients with high miR-455-3p expression had significantly lower 5-year overall survival than those with low miR-455-3p expression (log-rank test, P=0.001). Cox regression analysis further determined that miR-455-3p was an independent prognostic indicator for overall survival in patients with glioma (hazard ratio=2.136; 95% CI=1.177-3.877; P=0.013). In conclusion, the present study revealed a series of miRNAs with potential functional roles in the pathogenesis of glioma, and provides findings that indicate miR-455-3p as a promising biomarker for the prognosis of glioma
Wide-area measurement-based supervision of the cerebral venous hemodynamic in a novel rat model
Abstract(#br)Background(#br)Traumatic brain injury (TBI) includes primary and secondary injuries, while monitoring intracranial pressure (ICP) and cerebral blood flow (CBF) is conducive to improve the prognosis of patients. However, the function of cerebral venous in this process is still unclear.(#br)New Method(#br)An acute epidural hematoma (AEDH) model was developed by placing a controllable microballoon in the right epidural space of a rat. The laser speckle contrast imaging (LSCI) system was used to observe CBF in real time, while ICP was monitored simultaneously. And the stability of this model was examined by magnetic resonance imaging (MRI).(#br)Results(#br)The blood perfusion rate (BPR) of venous was significantly negatively correlated with ICP. In the 100 ÎĽL group, the ipsilateral cerebral venous and microcirculation blood flow significantly decreased. According to the gross observations and pathological results, ischemic brain injury was the most serious on this condition.(#br)Comparison with Existing Method(s)(#br)Modeling method is relatively simple, which effectively reduces the cost. The volume of the microballoon is adjusted to simulate the volume of different size of hematomas. In addition, LSCI, as an advanced blood flow monitoring technology, has high sensitivity to detect subtle changes in CBF.(#br)Conclusion(#br)This study successfully developed a stable and reproducible AEDH rat model. Based on this model, it is preliminarily demonstrated that local intracranial hypertension can cause cerebral venous return restriction, which is an indispensable factor leading to the aggravation of secondary brain injury
Wide-area measurement-based supervision of the cerebral venous hemodynamic in a novel rat model.
BACKGROUND(#br)Traumatic brain injury (TBI) includes primary and secondary injuries, while monitoring intracranial pressure (ICP) and cerebral blood flow (CBF) is conducive to improve the prognosis of patients. However, the function of cerebral venous in this process is still unclear.(#br)NEW METHOD(#br)An acute epidural hematoma (AEDH) model was developed by placing a controllable micro balloon in the right epidural space of a rat. The laser speckle contrast imaging (LSCI) system was used to observe CBF in real time, while ICP was monitored simultaneously. And the stability of this model was examined by magnetic resonance imaging (MRI).(#br)RESULTS(#br)The blood perfusion rate (BPR) of venous was significantly negatively correlated with ICP. In the 100 ÎĽ L group, the ipsilateral cerebral venous and microcirculation blood flow significantly decreased. According to the gross observations and pathological results, ischemic brain injury was the most serious on this condition.(#br)COMPARISON WITH EXISTING METHOD(S)(#br)Modeling method is relatively simple, which effectively reduces the cost. The volume of the micro balloon is adjusted to simulate the volume of different size of hematomas. In addition, LSCI, as an advanced blood flow monitoring technology, has high sensitivity to detect subtle changes in CBF.(#br)CONCLUSION(#br)This study successfully developed a stable and reproducible AEDH rat model. Based on this model, it is preliminarily demonstrated that local intracranial hypertension can cause cerebral venous return restriction, which is an indispensable factor leading to the aggravation of secondary brain injury
GLUT3 expression in cystic change induced by hypoxia in pituitary adenomas
Tumor cells require large amounts of energy to sustain growth. Through the mediated transport of glucose transporters, the uptake and utilization of glucose by tumor cells are significantly enhanced in the hypoxic microenvironment. Pituitary adenomas are benign tumors with high-energy metabolisms. We aimed to investigate the role of expression of glucose transporter 3 (GLUT3) and glucose transporter 1 (GLUT1) in pituitary adenomas, including effects on size, cystic change and hormone type. Pituitary adenomas from 203 patients were collected from January 2013 to April 2017, and immunohistochemical analysis was used to detect the expression of GLUT3 and GLUT1 in tumor specimens. GLUT3-positive expression in the cystic change group was higher than that in the non-cystic change group (P = 0.018). Proportions of GLUT3-positive staining of microadenomas, macroadenomas, and giant adenomas were 22.7 (5/22), 50.4 (66/131) and 54.0% (27/50), respectively (P = 0.022). In cases of prolactin adenoma, GLUT3-positive staining was predominant in cell membranes (P = 0.000006), while in cases of follicle-stimulating hormone or luteotropic hormone adenoma, we found mainly paranuclear dot-like GLUT3 staining (P = 0.025). In other hormonal adenomas, GLUT3 was only partially expressed, and the intensity of cell membrane or paranuclear punctate staining was weak. In contrast to GLUT3, GLUT1 expression was not associated with pituitary adenomas. Thus, our results indicate that the expression of GLUT3 in pituitary adenomas is closely related to cystic change and hormonal type. This study is the first to report a unique paranuclear dot-like GLUT3 staining pattern in pituitary adenomas
Development of a large bore superconducting magnet with narrow liquid helium channels
A large bore NbTi superconducting magnet is designed, manufactured and tested. The superconducting magnet has an inner diameter of 460 mm, outer diameter of 600 mm and height of 540 mm. The magnet is dry wound using rectangular and round superconducting wires with their dimensions of 1.3 times 2.0 mm and Oslash1.3 mm respectively. In order to improve helium cooling effect, narrow liquid helium channels are set between adjacent layers. The magnet can generate 4 T central magnetic field at the designed operating current of 305 A. The magnet has been tested in a compact cryostat. Experimental results show that the superconducting magnet reached the designed magnetic performance. Details of the magnet design, fabrication and test are described in this paper
Efficacy of sellar opening in the pituitary adenoma resection of transsphenoidal surgery influences the degree of tumor resection
Abstract Background Endonasal transsphenoidal microsurgery is often adopted in the resection of pituitary adenoma, and has showed satisfactory treatment and minor injuries. It is important to accurately localize sellar floor and properly incise the bone and dura matter. Methods Fifty-one patients with pituitary adenoma undergoing endonasal transsphenoidal microsurgery were included in the present study. To identify the scope of sellar floor opening, CT scan of the paranasal sinus and MRI scan of the pituitary gland were performed for each subject. Intraoperatively, internal carotid artery injury, leakage of cerebrospinal fluid, and tumor texture were recorded, and postoperative complications and residual tumors were identified. Result The relative size of sellar floor opening significantly differed among the pituitary micro-, macro- and giant adenoma groups, and between the total and partial tumor resection groups. The ratio of sellar floor opening area to maximal tumor area was significantly different between the total and partial resection groups. Logistic regression analysis revealed that the ratio of sellar floor opening area to the largest tumor area, tumor texture, tumor invasion and age were independent prognostic factors. The vertical distance between the top point of sellar floor opening and planum sphenoidale significantly differed between the patients with and without leakage of cerebrospinal fluid. Conclusion These results together indicated that relatively insufficient sellar floor opening is a cause of leading to residual tumor, and the higher position of the opening and closer to the planum sphenoidale are likely to induce the occurrence of leakage of cerebrospinal fluid
Risk factors of prognosis in older patients with severe brain injury after surgical intervention
Abstract Background Older patients (aged ≥ 60 years) with severe brain injury have a high mortality and disability rate. The objective of this retrospective study was to assess the clinical risk factors of prognosis in older patients with severe brain injury after surgical intervention and to analyze the prognosis of the surviving group of patients 1 year after discharge. Methods Clinical data of older patients with severe brain injury who were admitted to two neurosurgical centers between January 2010 and December 2020 were collected. Patient age, sex, Glasgow Coma Scale (GCS) score at admission, underlying disease, mechanisms of injury, abnormal pupillary reflex, head computed tomography imaging findings (such as hematoma type),intraoperative brain swelling and other factors were reviewed. All the patients were categorized into a good prognosis (survival) group and a poor prognosis (death) group by the Glasgow Outcome Score (GOS); also, the related factors affecting the prognosis were screened and the independent risk factors were identified by the Binary logistic regression analysis. GOS was used to evaluate the prognosis of the surviving group of patients 1 year after discharge. Results Out of 269 patients, 171 (63.6%) survived, and 98 (36.4%) died during hospitalization. Univariate analysis showed that age, GCS score at admission, underlying diseases, abnormal pupillary reflex, the disappearance of ambient cistern, the midline structure shift, intraoperative brain swelling, oxygen saturation < 90%, and cerebral hernia were risk factors for the prognosis of older patients with severe brain injury after surgical intervention. Multivariate analysis showed that age, underlying diseases, disappearance of ambient cistern, Oxygen saturation < 90% and intraoperative brain swelling were independent risk factors of the prognosis in the population. The effect of surgical intervention differed among various age groups at 1-year follow-up after surgery. Conclusions The results of this retrospective study confirmed that age, underlying diseases, disappearance of ambient cistern, intraoperative brain swelling, and oxygen saturation < 90% are associated with poor prognosis in older postoperative patients with severe brain injury. Surgical intervention may improve prognosis and reduce mortality in older patients (age < 75 years). But for those patients (age ≥ 75 years), the prognosis was poor after surgical intervention
Clinical diagnostic value of amino acids in laryngeal squamous cell carcinomas
Background Early diagnosis and treatment can improve the survival rates of patients with laryngeal squamous cell carcinoma (LSCC). Therefore, it is necessary to discover new biomarkers for laryngeal cancer screening and early diagnosis. Methods We collected fasting plasma from LSCC patients and healthy volunteers, as well as cancer and para-carcinoma tissues from LSCC patients, and performed quantitative detection of amino acid levels using liquid chromatography-mass spectrometry. We used overall analysis and multivariate statistical analysis to screen out the statistically significant differential amino acids in the plasma and tissue samples, conducted receiver operating characteristic (ROC) analysis of the differential amino acids to evaluate the sensitivity and specificity of the differential amino acids, and finally determined the diagnostic value of amino acids for laryngeal cancer. Additionally, we identified amino acids in the plasma and tissue samples that are valuable for the early diagnosis of laryngeal cancer classified according to the tumor-node-metastasis (TNM) classification. Results Asparagine (Asp) and homocysteine (Hcy) were two amino acids of common significance in plasma and tissue samples, and their specificity and sensitivity analysis showed that they may be new biomarkers for the diagnosis and treatment of LSCC. According to the TNM staging system, phenylalanine (Phe) and isoleucine (Ile) were screened out in the plasma of LSCC patients at early (I and II) and advanced (III and IV) stages; ornithine hydrochloride (Orn), glutamic acid (Glu), and Glycine (Gly) were selected in the tissue. These dysregulated amino acids found in LSCC patients may be useful as clinical biomarkers for the early diagnosis and screening of LSCC
Expression of GLUT3 and HIF-1α in Meningiomas of Various Grades Correlated with Peritumoral Brain Edema
Aim. To investigate the expression of glucose transporter 3 (GLUT3) and hypoxia-inducible factor-1α protein (HIF-1α) in meningiomas and analyze the correlation between GLUT3 and HIF-1α expression with the pathological grade of peritumoral brain edema (PTBE) of meningiomas. Methods. In this cross-sectional study, we analyzed meningioma specimens from 160 patients collected from January 1, 2014, to December 1, 2017, by dividing them into a low-grade (WHO I) or high-grade (WHO II and WHO III) group. Immunohistochemical analyses were used to detect the expression level of GLUT3 and HIF-1α in the tumor specimens. Results. The proportion of GLUT3-positive staining in tumors sized 6 cm was 35.9% (37/103), 63.6% (28/44), and 53.8% (7/13), respectively (P=0.007). The proportion of HIF-1α-positive staining in tumors sized 6 cm was 41.7% (43/103), 68.2% (30/44), and 38.5% (5/13), respectively (P=0.010). The proportion of GLUT3-positive staining in the high-grade group and low-grade group was 70.8% (34/48) and 33.9% (38/112), respectively (P<0.001). The proportion of HIF-1α-positive staining in the high-grade group and low-grade group was 62.5% (30/48) and 42.9% (48/112), respectively (P=0.023). GLUT3-positive expression in meningioma PTBE grades 0, I, II, and III was 20.3% (13/64), 41.2% (14/34), 63.6% (21/33), and 82.8% (24/29), respectively (Bonferroni-corrected, P<0.001, α/6=0.008). HIF-1α-positive expression in meningioma PTBE grades 0, I, II, and III was 34.4% (22/64), 47.1% (16/34), 54.5% (18/33), and 75.9% (22/29), respectively (Bonferroni-corrected, P=0.003, α/6=0.008). Spearman’s correlation analysis revealed a correlation between the expression of GLUT3 and HIF-1α in meningiomas (r=0.463, P<0.001). Multivariate analysis revealed that GLUT3-positive expression, HIF-1α-positive expression, and high pathological grade were associated with the development of PTBE (P<0.05). Conclusions. GLUT3 and HIF-1α expression in meningiomas was closely related to the tumor size, pathological grade, and PTBE. This study is the first to report a unique map-like multifocal GLUT3 staining pattern in meningiomas