19,378 research outputs found
Design and Testing of Simple, Electrically Small, Low-Profile, Huygens Source Antennas with Broadside Radiation Performance
© 2016 IEEE. The efficacy of a simple, electrically small, low-profile, Huygens source antenna that radiates in its broadside direction is demonstrated numerically and experimentally. First, two types of electrically small, near-field resonant parasitic (NFRP) antennas are introduced and their individual radiation performance characteristics are discussed. The electric one is based on a modified Egyptian axe dipole NFRP element; the magnetic one is based on a capacitively loaded loop NFRP element. In both cases, the driven element is a simple coax-fed dipole antenna, and there is no ground plane. By organically combining these two elements, Huygens source antennas are obtained. A forward propagating demonstrator version was fabricated and tested. The experimental results are in good agreement with their analytical and simulated values. This low profile, ∼0.05λ0, and electrically small, ka = 0.645, prototype yielded a peak realized gain of 2.03 dBi in the broadside direction with a front-to-back ratio of 16.92 dB. A backward radiating version is also obtained; its simulated current distribution behavior is compared with that of the forward version to illustrate the design principles
Designs of Compact, Planar, Wideband, Monopole Filtennas with Near-Field Resonant Parasitic Elements
© 2018 IEEE. Two planar efficient wideband, electrically small monopole filtennas are presented. The first one directly evolves from a common planar capacitively loaded loop (CLL)-based filter possessing a flat realized gain response within the operational band and good band-edge selectivity. The second filtenna consists of a driven element augmented with a CLL structure and with slots etched into its ground plane. It expands the fractional impedance bandwidth of the first case from 6.28 percent up to 7.9 percent. It also has a gain response that remains flat over its operational bandwidth and even higher band-edge selectivity. Both filtennas are electrically small with ka less than 1. The experimental results, which are in good agreement with their simulated values, demonstrate that both filtennas exhibit excellent impedance matching, high radiation efficiency, flat gain response, and steep skirts at both band edges. Moreover, they produce monopole radiation patterns that are uniform and nearly omnidirectional in their H-planes
Compact Planar Ultrawideband Antennas with Continuously Tunable, Independent Band-Notched Filters
© 2016 IEEE. A compact planar ultrawideband antenna with continuously tunable, independent band notches for cognitive radio applications is presented. The antenna is fabricated using a copper-cladded substrate. A radiating patch with an inverted rectangular T-slot is etched on the top side of the substrate. A straight rectangular strip with a complete gap is embedded into the T-slot. By placing a single varactor diode across this gap, a frequency-agile band-notch function below 5 GHz is realized. On the bottom side of the substrate, a U-shaped parasitic element having an interdigitated-structure is placed beneath the radiating patch. The second narrow band notch is created by inserting a second varactor diode into the gap on one leg of the parasitic element. It has a frequency-agile performance above 5 GHz. The presence of the interdigitated structure suppresses higher order resonant modes and enhances the tunability of the notched bandwidth. Because these antenna structures naturally block dc, a very small number of lumped elements are required. The experimental results, which are in good agreement with their simulated values, demonstrate that both band notches can be independently controlled and the entire frequency-agile fractional bandwidth is as high as 74.5%, demonstrating a very wide notched frequency-agile coverage
Physical Layer Security in Large-Scale Millimeter Wave Ad Hoc Networks
Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in the mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics and large antenna arrays on the secrecy performance. We also characterize the impact of artificial noise in this networks. Our results reveal that in the low transmit power regime, the use of low mmWave frequency achieves better secrecy performance, when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining more secrecy rate. Eavesdroppers can intercept more information by using wide beam pattern. Furthermore, the use of artificial noise may be unable to enhance the secrecy rate for the case of low node density
Recommended from our members
Latitudinal distribution of reactive nitrogen in the free troposphere over the Pacific Ocean in late winter/early spring
The late winter/early spring (February/March, 1994) measurements of Pacific Exploratory Mission-West (PEM-W) B have been analyzed to show latitudinal distributions (45°N to 10°S) of the mixing ratios of reactive nitrogen species (NO, peroxyacetylnitrate (PAN), HNO3, and NOy), ozone, and chemical tracers (CO, NMHCs, acetone, and C2Cl4) with a focus on the upper troposphere. Mixing ratios of all species are relatively low in the warm tropical and subtropical air south of the polar jetstream (≈28°N) but increase sharply with latitude in the cold polar air north of the jetstream. Noteworthy is the continuous increase in reservoir species (PAN and HNO3) and the simultaneous decrease in NOx toward the northern midlatitudes. The Harvard global three-dimensional model of tropospheric chemistry has been used to compare these observations with predictions. In the upper troposphere the magnitude and distribution of measured NOy and PAN as a function of latitude is well represented by this model, while NOx (measured NO + model calculated NO2) is underpredicted, especially in the tropics. Unlike several previous studies, where model-predicted HNO3 exceeded observations by as much as a factor of 10, the present data/model comparison is improved to within a factor of 2. The predicted upper tropospheric HNO3 is generally below or near measured values, and there is little need to invoke particle reactions as a means of removing or recycling HNO3. Comparison between measured NOy and the sum of its three main constituents (PAN + NOx + HNO3) on average show a small mean shortfall (<15%). This shortfall could be attributed to the presence of known but unmeasured species (e.g., peroxynitric acid and alkyl nitrates) as well as to instrument errors. Copyright 1998 by the American Geophysical Union
Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films
The durations and average speeds of ultrashort optical pulses transmitted
through chiral sculptured thin films (STFs) were calculated using a
finite-difference time-domain algorithm. Chiral STFs are a class of
nanoengineered materials whose microstructure comprises parallel helicoidal
nanowires grown normal to a substrate. The nanowires are 10-300 nm in
diameter and m in length. Durations of transmitted pulses tend to
increase with decreasing (free-space) wavelength of the carrier plane wave,
while average speeds tend to increase with increasing wavelength. An increase
in nonlinearity, as manifested by an intensity-dependent refractive index in
the frequency domain, tends to increase durations of transmitted pulses and
decrease average speeds. The circular Bragg phenomenon exhibited by a chiral
STFs manifests itself in the frequency domain as high reflectivity for normally
incident carrier plane waves whose circular polarization state is matched to
the structural handedness of the film and whose wavelength falls in a range
known as the Bragg regime; films of the opposite structural handedness reflect
such plane waves little. This effect tends to distort the shapes of transmitted
pulses with respect to the incident pulses, and such shaping can cause sharp
changes in some measures of average speed with respect to carrier wavelength. A
local maximum in the variation of one measure of the pulse duration with
respect to wavelength is noted and attributed to the circular Bragg phenomenon.
Several of these effects are explained via frequency-domain arguments. The
presented results serve as a foundation for future theoretical and experimental
studies of optical pulse propagation through causal, nonlinear, nonhomogeneous,
and anisotropic materials.Comment: To appear in Journal of Modern Optic
Compact, Frequency-Reconfigurable Filtenna with Sharply Defined Wideband and Continuously Tunable Narrowband States
© 1963-2012 IEEE. A compact, frequency-reconfigurable filtenna with sharp out-of-band rejection in both its wideband and continuously tunable narrowband states is presented. It is intended for use in cognitive radio applications. The wideband state is the sensing state and operationally covers 2.35-4.98 GHz. The narrowband states are intended to cover communications within the 3.05-4.39 GHz range, which completely covers the Worldwide Interoperability for Microwave Access (WiMAX) band and the satellite communications C-band. A p-i-n diode is employed to switch between these wide and narrowband operational states. Two varactor diodes are used to shift the operational frequencies continuously among the narrowband states. The filtenna consists of a funnel-shaped monopole augmented with a reconfigurable filter; it has a compact electrical size: 0.235λLL × 0.392λL , where the wavelength λL corresponds to the lower bound of its operational frequencies. The measured reflection coefficients, radiation patterns, and realized gains for both operational states are in good agreement with their simulated values
Observation of ion gettering effect in high temperature superconducting oxide material
Ion gettering effect has been observed in high-temperature superconducting YBa2Cu3O7 material. Silicon ions were implanted into the material and subsequent high-temperature annealing produced ion movement from a low concentration region to a higher concentration region where the damage of the crystal structure is severe. This gettering effect could be used to make a superconductor-nonsuperconductor-superconductor trilayer structure within a single YBCO film.published_or_final_versio
Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B
Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union
Recommended from our members
On the origin of tropospheric ozone and NOx over the tropical South Pacific
The budgets of ozone and nitrogen oxides (NOx = NO + NO2) in the tropical South Pacific troposphere are analyzed by photochemical point modeling of aircraft observations at 0-12 km altitude from the Pacific Exploratory Mission-Tropics A campaign flown in September-October 1996. The model reproduces the observed NO2/NO concentration ratio to within 30% and has similar success in simulating observed concentrations of peroxides (H2O2, CH3OOH), lending confidence in its use to investigate ozone chemistry. It is found that chemical production of ozone balances only half of chemical loss in the tropospheric column over the tropical South Pacific. The net loss is 1.8 x 1011 molecules cm-2 s-1. The missing source of ozone is matched by westerly transport of continental pollution into the region. Independent analysis of the regional ozone budget with a global three-dimensional model corroborates the results from the point model and reveals the importance of biomass burning emissions in South America and Africa for the ozone budget over the tropical South Pacific. In this model, biomass burning increases average ozone concentrations by 7-8 ppbv throughout the troposphere. The NOx responsible for ozone production within the South Pacific troposphere below 4 km can be largely explained by decomposition of peroxyacetylnitrate (PAN) transported into the region with biomass burning pollution at higher altitudes. Copyright 1999 by the American Geophysical Union
- …