144 research outputs found

    FoxO gene family evolution in vertebrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forkhead box, class O (FoxO) belongs to the large family of forkhead transcription factors that are characterized by a conserved forkhead box DNA-binding domain. To date, the FoxO group has four mammalian members: FoxO1, FoxO3a, FoxO4 and FoxO6, which are orthologs of DAF16, an insulin-responsive transcription factor involved in regulating longevity of worms and flies. The degree of homology between these four members is high, especially in the forkhead domain, which contains the DNA-binding interface. Yet, mouse FoxO knockouts have revealed that each FoxO gene has its unique role in the physiological process. Whether the functional divergences are primarily due to adaptive selection pressure or relaxed selective constraint remains an open question. As such, this study aims to address the evolutionary mode of FoxO, which may lead to the functional divergence.</p> <p>Results</p> <p>Sequence similarity searches have performed in genome and scaffold data to identify homologues of FoxO in vertebrates. Phylogenetic analysis was used to characterize the family evolutionary history by identifying two duplications early in vertebrate evolution. To determine the mode of evolution in vertebrates, we performed a rigorous statistical analysis with FoxO gene sequences, including relative rate ratio tests, branch-specific <it>d</it><sub><it>N</it></sub>/<it>d</it><sub><it>S </it></sub>ratio tests, site-specific <it>d</it><sub><it>N</it></sub>/<it>d</it><sub><it>S </it></sub>ratio tests, branch-site <it>d</it><sub><it>N</it></sub>/<it>d</it><sub><it>S </it></sub>ratio tests and clade level amino acid conservation/variation patterns analysis. Our results suggest that FoxO is constrained by strong purifying selection except four sites in FoxO6, which have undergone positive Darwinian selection. The functional divergence in this family is best explained by either relaxed purifying selection or positive selection.</p> <p>Conclusion</p> <p>We present a phylogeny describing the evolutionary history of the FoxO gene family and show that the genes have evolved through duplications followed by purifying selection except for four sites in FoxO6 fixed by positive selection lie mostly within the non-conserved optimal PKB motif in the C-terminal part. Relaxed selection may play important roles in the process of functional differentiation evolved through gene duplications as well.</p

    A Comparative Study of Mouse Hepatic and Intestinal Gene Expression Profiles under PPARĪ± Knockout by Gene Set Enrichment Analysis

    Get PDF
    Gene expression profiling of PPARĪ± has been used in several studies, but fewer studies went further to identify the tissue-specific pathways or genes involved in PPARĪ± activation in genome-wide. Here, we employed and applied gene set enrichment analysis to two microarray datasets both PPARĪ± related respectively in mouse liver and intestine. We suggested that the regulatory mechanism of PPARĪ± activation by WY14643 in mouse small intestine is more complicated than in liver due to more involved pathways. Several pathways were cancer-related such as pancreatic cancer and small cell lung cancer, which indicated that PPARĪ± may have an important role in prevention of cancer development. 12 PPARĪ± dependent pathways and 4 PPARĪ± independent pathways were identified highly common in both liver and intestine of mice. Most of them were metabolism related, such as fatty acid metabolism, tryptophan metabolism, pyruvate metabolism with regard to PPARĪ± regulation but gluconeogenesis and propanoate metabolism independent of PPARĪ± regulation. Keratan sulfate biosynthesis, the pathway of regulation of actin cytoskeleton, the pathways associated with prostate cancer and small cell lung cancer were not identified as hepatic PPARĪ± independent but as WY14643 dependent ones in intestinal study. We also provided some novel hepatic tissue-specific marker genes

    A comparative genome analysis of gene expression reveals different regulatory mechanisms between mouse and human embryo pre-implantation development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pre-implantation development is a crucial step in successful implantation and pregnancy in mammals. It has been studied in depth, but mostly in laboratory animal models. Less is known about the regulatory mechanism involved in the pre-implantation development in humans and about the comparative aspects.</p> <p>Methods</p> <p>Here, we employed the microarray datasets from the public database library of GEO and applied comparative analysis of genome wide temporal gene expression data based on statistical analysis and functional annotation for both mouse and human, demonstrating the discordance between the regulatory mechanisms of both mouse and human pre-implantation development.</p> <p>Results</p> <p>There were differences between mouse and human pre-implantation development both in the global gene expression pattern and in the expression changes of individual genes at each stage, including different major transient waves of transcription profiles and some stage-specific genes and significantly related pathways. There also appeared to be different functional changes from one stage to another between mouse and human.</p> <p>Conclusions</p> <p>The analysis presented here lead to interesting and complementary conclusions that the regulatory mechanism of human pre-implantation development is not completely the same as the mouse. Not as the fact that 1-cell to 2-cell stage is important for mouse pre-implantation development, the 4-cell stage and 8-cell stage are both essential for human. Unlike in mouse, of which most of pathways found were related to energy, RNA and protein metabolism, the identified pathways in human were mostly disease-related and associated with human pre-implantation embryonic development. All of these suggest that a further comparative analysis should be required for applying the result of mouse expression data to human research or therapy, particularly in pre-implantation developments. Our study provides several potential targets of genes and pathways for studying the regulatory mechanism of human pre-implantation development using mouse model.</p

    ReCGiP, a database of reproduction candidate genes in pigs based on bibliomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reproduction in pigs is one of the most economically important traits. To improve the reproductive performances, numerous studies have focused on the identification of candidate genes. However, it is hard for one to read all literatures thoroughly to get information. So we have developed a database providing candidate genes for reproductive researches in pig by mining and processing existing biological literatures in human and pigs, named as ReCGiP.</p> <p>Description</p> <p>Based on text-mining and comparative genomics, ReCGiP presents diverse information of reproduction-relevant genes in human and pig. The genes were sorted by the degree of relevance with the reproduction topics and were visualized in a gene's co-occurrence network where two genes were connected if they were co-cited in a PubMed abstract. The 'hub' genes which had more 'neighbors' were thought to be have more important functions and could be identified by the user in their web browser. In addition, ReCGiP provided integrated GO annotation, OMIM and biological pathway information collected from the Internet. Both pig and human gene information can be found in the database, which is now available.</p> <p>Conclusions</p> <p>ReCGiP is a unique database providing information on reproduction related genes for pig. It can be used in the area of the molecular genetics, the genetic linkage map, and the breeding of the pig and other livestock. Moreover, it can be used as a reference for human reproduction research.</p

    Genome-Wide and Trait-Specific Markers: A Perspective in Designing Conservation Programs

    Get PDF
    Nowadays, breed conservation has entered the genomics era and it is imperative to develop novel theory to design the breeding schemes of the conservation populations by using the genomic information. The genome-wide markers have been regarded as a useful strategy to maintain genetic diversity. However, using the genome-wide SNPs to optimize diversity might not be optimal for some specific loci associated with specific-traits. Using the sequencing data of the conserved population of the Saba pig breed, we demonstrated that the conservation program designed by using the genome-wide SNPs might result in the loss of the genetic diversity of the reproduction trait. We suggested an idea of using phylogenetic tree to select valuable individuals for conservation program based on the genome-wide and trait-specific makers. The selection rule was to make the selected samples to be widely distributed as much as possible in both the genome-wide and trait-specific phylogenetic trees

    Twinning-assisted dynamic adjustment of grain boundary mobility

    Get PDF
    Grain boundary (GB) plasticity dominates the mechanical behaviours of nanocrystalline materials. Under mechanical loading, GB configuration and its local deformation geometry change dynamically with the deformation; the dynamic variation of GB deformability, however, remains largely elusive, especially regarding its relation with the frequently-observed GB-associated deformation twins in nanocrystalline materials. Attention here is focused on the GB dynamics in metallic nanocrystals, by means of well-designed in situ nanomechanical testing integrated with molecular dynamics simulations. GBs with low mobility are found to dynamically adjust their configurations and local deformation geometries via crystallographic twinning, which instantly changes the GB dynamics and enhances the GB mobility. This selfadjust twin-assisted GB dynamics is found common in a wide range of face-centred cubic nanocrystalline metals under different deformation conditions. These findings enrich our understanding of GB-mediated plasticity, especially the dynamic behaviour of GBs, and bear practical implication for developing high performance nanocrystalline materials through interface engineering

    Regression-based approach for testing the association between multi-region haplotype configuration and complex trait

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is quite common that the genetic architecture of complex traits involves many genes and their interactions. Therefore, dealing with multiple unlinked genomic regions simultaneously is desirable.</p> <p>Results</p> <p>In this paper we develop a regression-based approach to assess the interactions of haplotypes that belong to different unlinked regions, and we use score statistics to test the null hypothesis of non-genetic association. Additionally, multiple marker combinations at each unlinked region are considered. The multiple tests are settled via the <it>minP </it>approach. The <it>P </it>value of the "best" multi-region multi-marker configuration is corrected via Monte-Carlo simulations. Through simulation studies, we assess the performance of the proposed approach and demonstrate its validity and power in testing for haplotype interaction association.</p> <p>Conclusion</p> <p>Our simulations showed that, for binary trait without covariates, our proposed methods prove to be equal and even more powerful than htr and hapcc which are part of the FAMHAP program. Additionally, our model can be applied to a wider variety of traits and allow adjustment for other covariates. To test the validity, our methods are applied to analyze the association between four unlinked candidate genes and pig meat quality.</p

    Identification of Poly (ADP-ribose) Polymerase-1 (PARP-1) as a Novel Kruppel-like Factor 8-interacting and -regulating Protein

    Get PDF
    Kruppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, KLF8-interacting proteins remain largely unidentified. Using co-immunoprecipitation (co-IP), mass spectrometry, and GST pulldown assays, we identified poly(ADP-ribose) polymerase-1(PARP-1) as a novel KLF8-interacting protein. Co-IP and Western blotting indicated that KLF8 is also a PARP-1 substrate. Mutation of the cysteines in the zinc finger domain of KLF8 abolished PARP-1 interaction. Surprisingly, immunofluorescent staining revealed a cytoplasmic mislocalization of KLF8 in PARP-1(-/-) cells or when the interaction was disrupted. This mislocalization was prevented by either PARP-1 re-expression or inhibition of CRM1-dependent nuclearexport. Interestingly, co-IP indicated competition between PARP-1 and CRM1 for KLF8 binding. Cycloheximide chase assay showed a decrease in the half-life of KLF8 protein when PARP-1 expression was suppressed or KLF8-PARP-1 interaction was disrupted. Ubiquitination assays implicated KLF8 as a target of ubiquitination that was significantly higher in PARP-1(-/-) cells. Promoter reporter assays and chromatin immunoprecipitation assays showed that KLF8 activation on the cyclin D1 promoter was markedly reduced when PARP-1 was deleted or inhibited or when KLF8-PARP-1 interaction was disrupted. Overall, this work has identified PARP-1 as a novel KLF8-binding and-regulating protein and provided new insights into the mechanisms underlying the regulation of KLF8 nuclear localization, stability, and functions
    • ā€¦
    corecore