333,624 research outputs found

    Polarized Curvature Radiation in Pulsar Magnetosphere

    Full text link
    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and co-rotating with the pulsar magnetosphere. Within the 1/{\deg} emission cone, the waves can be divided into two natural wave mode components, the ordinary (O) mode and the extraord nary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O-mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the co-rotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the co-rotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of out-coming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.Comment: 12 pages, 9 figures, Accepted for publication in MNRA

    QCD Factorization for Quarkonium Production in Hadron Collions at Low Transverse Momentum

    Full text link
    Inclusive production of a quarkonium ηc,b\eta_{c,b} in hadron collisions at low transverse momentum can be used to extract various Transverse-Momentum-Dependent(TMD) gluon distributions of hadrons, provided the TMD factorization for the process holds. The factorization involving unpolarized TMD gluon distributions of unpolarized hadrons has been examined with on-shell gluons at one-loop level. In this work we study the factorization at one-loop level with diagram approach in the most general case, where all TMD gluon distributions at leading twist are involved. We find that the factorization holds and the perturbative effects are represented by one perturbative coefficient. Since the initial gluons from hadrons are off-shell in general, there exists the so-called super-leading region found recently. We find that the contributions from this region can come from individual diagrams at one-loop level, but they are cancelled in the sum. Our factorized result for the differential cross-section is explicitly gauge-invariant.Comment: discussions and references are added. Published version on Phys. Rev.

    Control strategy for a dual-arm maneuverable space robot

    Get PDF
    A simple strategy for the attitude control and arm coordination of a maneuverable space robot with dual arms is proposed. The basic task for the robot consists of the placement of marked rigid solid objects with specified pairs of gripping points and a specified direction of approach for gripping. The strategy consists of three phases each of which involves only elementary rotational and translational collision-free maneuvers of the robot body. Control laws for these elementary maneuvers are derived by using a body-referenced dynamic model of the dual-arm robot

    Quantum storage and information transfer with superconducting qubits

    Full text link
    We design theoretically a new device to realize the general quantum storage based on dcSQUID charge qubits. The distinct advantages of our scheme are analyzed in comparison with existing storage scenarios. More arrestingly, the controllable XY-model spin interaction has been realized for the first time in superconducting qubits, which may have more potential applications besides those in quantum information processing. The experimental feasibility is also elaborated.Comment: 4 pages, 2 figure

    Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers

    Get PDF
    Motivated by recent experiments showing nonlinear elasticity of in vitro networks of the biopolymer actin cross-linked with filamin, we present an effective medium theory of flexibly cross-linked stiff polymer networks. We model such networks by randomly oriented elastic rods connected by flexible connectors to a surrounding elastic continuum, which self-consistently represents the behavior of the rest of the network. This model yields a crossover from a linear elastic regime to a highly nonlinear elastic regime that stiffens in a way quantitatively consistent with experiment.Comment: 4 pages, 3 figure
    corecore