249 research outputs found

    WITT: A Wireless Image Transmission Transformer for Semantic Communications

    Full text link
    In this paper, we aim to redesign the vision Transformer (ViT) as a new backbone to realize semantic image transmission, termed wireless image transmission transformer (WITT). Previous works build upon convolutional neural networks (CNNs), which are inefficient in capturing global dependencies, resulting in degraded end-to-end transmission performance especially for high-resolution images. To tackle this, the proposed WITT employs Swin Transformers as a more capable backbone to extract long-range information. Different from ViTs in image classification tasks, WITT is highly optimized for image transmission while considering the effect of the wireless channel. Specifically, we propose a spatial modulation module to scale the latent representations according to channel state information, which enhances the ability of a single model to deal with various channel conditions. As a result, extensive experiments verify that our WITT attains better performance for different image resolutions, distortion metrics, and channel conditions. The code is available at https://github.com/KeYang8/WITT

    The altering cellular components and function in tumor microenvironment during remissive and relapsed stages of anti-CD19 CAR T-cell treated lymphoma mice

    Get PDF
    Anti-CD19 chimeric antigen receptor (CAR) T cells represent a highly promising strategy for B-cell malignancies. Despite the inspiring initial achievement, remission in a notable fraction of subjects is short-lived, and relapse remains a major challenge. Tumor microenvironment (TME) was proved to be aroused by CAR T cells; however, little is known about the dynamic characteristics of cellular components in TME especially during the different phases of disease after anti-CD19 CAR T-cell treatment. We took advantage of an immunocompetent model receiving syngeneic A20 lymphoma cells to dissect the changes in TME with or without CAR T-cell injection. We found that anti-CD19 CAR T-cell treatment attenuated the symptoms of lymphoma and significantly prolonged mice survival through eradicating systemic CD19+ cells. Increased myeloid subsets, including CD11c+ DCs and F4/80+ macrophages with higher MHC II and CD80 expression in bone marrow, spleen, and liver, were detected when mice reached remission after anti-CD19 CAR T treatment. Compared to mice without anti-CD19 CAR T administration, intrinsic T cells were triggered to produce more IFN-γ and TNF-α. However, some lymphoma mice relapsed by day 42 after therapy, which coincided with CAR T-cell recession, decreased myeloid cell activation and increased Treg cells. Elevated intrinsic T cells with high PD-1 and TIGIT exhaust signatures and attenuated cytotoxicity in TME were associated with the late-stage relapse of CAR T-cell treatment. In summary, the cellular compositions of TME as allies of CAR T cells may contribute to the anti-tumor efficacy at the initial stage, whereas anti-CD19 CAR T-cell disappearance and host response immunosuppression may work together to cause lymphoma relapse after an initial, near-complete elimination phase

    Adaptive Semantic Communications: Overfitting the Source and Channel for Profit

    Full text link
    Most semantic communication systems leverage deep learning models to provide end-to-end transmission performance surpassing the established source and channel coding approaches. While, so far, research has mainly focused on architecture and model improvements, but such a model trained over a full dataset and ergodic channel responses is unlikely to be optimal for every test instance. Due to limitations on the model capacity and imperfect optimization and generalization, such learned models will be suboptimal especially when the testing data distribution or channel response is different from that in the training phase, as is likely to be the case in practice. To tackle this, in this paper, we propose a novel semantic communication paradigm by leveraging the deep learning model's overfitting property. Our model can for instance be updated after deployment, which can further lead to substantial gains in terms of the transmission rate-distortion (RD) performance. This new system is named adaptive semantic communication (ASC). In our ASC system, the ingredients of wireless transmitted stream include both the semantic representations of source data and the adapted decoder model parameters. Specifically, we take the overfitting concept to the extreme, proposing a series of ingenious methods to adapt the semantic codec or representations to an individual data or channel state instance. The whole ASC system design is formulated as an optimization problem whose goal is to minimize the loss function that is a tripartite tradeoff among the data rate, model rate, and distortion terms. The experiments (including user study) verify the effectiveness and efficiency of our ASC system. Notably, the substantial gain of our overfitted coding paradigm can catalyze semantic communication upgrading to a new era

    Design And Hydraulic Performance Of A Novel Hydraulic Ram Pump

    Full text link
    The automatic hydraulic ram pump (hydram) is a unique device that utilizes energy from a falling quantity of water as the driving power to pump some of the water to a head much higher than the source. The hydraulic ram is structurally simple, consisting of only two moving parts: the waste valve and the delivery (check) valve. There is also an air chamber with an air or snifter valve. With a continuous flow of water, the hydram will operate automatically and continuously with no other external energy. Hydrams are suitable for small-scale water supply schemes supplying farm- houses and isolated settlements as well as in rural situations in developing countries. The authors develop a novel hydram that contains the three innovations. A new structure and shape of hydram is designed to greatly reduce its size and weight, but has the similar hydraulic performance to the conventional hydrams. Based on hard metal seal, the elastic seal is added for the waste valve and the delivery valve, respectively. The hard metal seal primarily bears the impact of the moving valve disc while the elastic seal is responsible for sealing and reducing noise from the impact of the moving valve disc against the hard metal seal. A device, consisting of a valve and a short pipe that connects the air chamber to the lifting pipe, is added to automatically adjust the gas volume upper the air chamber, so as to keep the hydram operating in a state of high efficiency. Finally, the hydraulic performance of the novel hydram is measured by the model tests

    Preclinical evaluation of the ROCK1 inhibitor, GSK269962A, in acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with high mortality that urgently requires new treatments. ROCK1 plays an essential role in regulating growth and survival in AML cells. In this study, we evaluated GSK269962A, a selective ROCK1 inhibitor, in preclinical models of AML. Compared with solid tumors, GSK269962A selectively inhibited cell growth and clonogenicity of AML cells. Furthermore, GSK269962A arrested AML cells in the G2 phase and induced apoptosis by regulating multiple cell cycle- and apoptosis-associated proteins. Strikingly, GSK269962A could eliminate leukemia cells from bone marrow, liver, and spleen in an animal model of AML and significantly prolong mouse survival. Mechanistically, GSK269962A could inhibit the growth of AML by blocking ROCK1/c-Raf/ERK signaling pathway. Notably, a correlation was found between the expression levels of ROCK1 protein and the sensitivity of GSK269962A in AML. These data highlight the potential role of ROCK1 as an attractive target for treating AML, as well as the potential of GSK269962A for use in clinical trials of AML

    Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases

    Get PDF
    Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren ‘s syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod’s unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future

    Ligustrazine Inhibits the Migration and Invasion of Renal Cell Carcinoma

    Get PDF
    Ligustrazine is a Chinese herb (Chuanxiong) approved for use as a medical drug in China. Recent evidence suggests that ligustrazine has promising antitumor properties. Our preliminary results showed that ligustrazine could inhibit the growth of human renal cell carcinoma (RCC) cell lines. However, the complicated molecular mechanism has not been fully revealed. Therefore, the purpose of this study to investigate the mechanism of ligustrazine resistance in human RCC cells. Cell proliferation, migration, invasion, and colony-formation ability of RCC cells A498 were detected by MTT assay, clonal formation rates, and transwell chamber assay in vitro. The expression of epithelial–mesenchymal transition (EMT)–related proteins were analyzed using western blot test. The effect of ligustrazine on the growth of A498 cells in nude mice was investigated in vivo. Our results showed that ligustrazine could significantly inhibit the proliferation, migration, and invasion of A498 both in vivo and vitro. Western blot analysis showed that the expressions of EMT-related, N-cadherin, snail, and slug proteins were significantly decreased in A498 in the ligustrazine treatment group. This study indicated that ligustrazine could significantly inhibit the malignant biological behaviors of RCC cell lines, possibly by inhibiting the EMT process
    • …
    corecore