883,002 research outputs found

    On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Robust stability serves as an important regulation mechanism in system biology and synthetic biology. In this paper, the robust stability analysis problem is investigated for a class of nonlinear delayed genetic regulatory networks with parameter uncertainties and stochastic perturbations. The nonlinear function describing the feedback regulation satisfies the sector condition, the time delays exist in both translation and feedback regulation processes, and the state-dependent Brownian motions are introduced to reflect the inherent intrinsic and extrinsic noise perturbations. The purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid (mRNA) and protein is asymptotically stable irrespective of the norm-bounded modeling errors. By utilizing a new Lyapunov functional based on the idea of “delay fractioning”, we employ the linear matrix inequality (LMI) technique to derive delay-dependent sufficient conditions ensuring the robust stability of the gene regulatory networks. Note that the obtained results are formulated in terms of LMIs that can easily be solved using standard software packages. Simulation examples are exploited to illustrate the effectiveness of the proposed design procedures

    Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue

    Full text link
    For the first time, we show that unipolar fatigue does occur in antiferroelectric capacitors, confirming the predictions of a previous work [Appl. Phys. Lett., 94, 072901 (2009)]. We also show that unipolar fatigue in antiferroelectrics is less severe than bipolar fatigue if the driving field is of the same magnitude. This phenomenon has been attributed to the switching-induced charge injection, the main cause for polarization fatigue in ferroelectric and antiferroelectric materials. Other evidences for polarization fatigue caused by the switching-induced charge injection from the nearby electrode rather than the charge injection during stable/quasi-stable leakage current stage are also discussed.Comment: 10 pages and 2 figure

    Religious Identity Formation Among Adolescents: The Role of Religious Secondary Schools

    Full text link
    The purpose of this article is to examine the role religious secondary schools play in the religious identity formation of adolescents. Although several research studies have found a correlation between enrollment in private religious schools and adolescents’ religious identity formation, the researchers of these studies have only speculated about which specific characteristics of religious schools are responsible for this formation in the lives of adolescents. Through a review of the literature, the present article identifies several characteristics of religious secondary schools that may contribute to the process of religious identity formation: a community of religious peers, the presence of religious adults, and an exposure to religious instruction. Implications for Christian secondary school practitioners are also discussed

    First-principles investigation of transient current of molecular devices by using complex absorbing potential

    Get PDF
    Based on the non-equilibrium Green's function (NEGF) coupled with density function theory (DFT), namely, NEGF-DFT quantum transport theory, we propose an efficient formalism to calculate the transient current of molecular devices under a step-like pulse from first principles. By combining NEGF-DFT with the complex absorbing potential (CAP), the computational complexity of our formalism (NEGF-DFT-CAP) is proportional to O(N)\emph{O}(N) where NN is the number of time steps in the time-dependent transient calculation. Compared with state-of-the-art algorithm of first principles time-dependent calculation that scales with at least N2N^2, this order N technique drastically reduces the computational burden making it possible to tackle realistic molecular devices. To ensure the accuracy of our method, we carry out the benchmark calculation compared with exact NEGF-TDDFT formalism and they agree well with each other. As an illustration, we investigate the transient current of molecular device Al-C3_3-Al from first principles

    Modeling two-state cooperativity in protein folding

    Full text link
    A protein model with the pairwise interaction energies varying as local environment changes, i.e., including some kinds of collective effect between the contacts, is proposed. Lattice Monte Carlo simulations on the thermodynamical characteristics and free energy profile show a well-defined two-state behavior and cooperativity of folding for such a model. As a comparison, related simulations for the usual G\={o} model, where the interaction energies are independent of the local conformations, are also made. Our results indicate that the evolution of interactions during the folding process plays an important role in the two-state cooperativity in protein folding.Comment: 5 figure
    corecore