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First-principles investigation of transient current in molecular devices
by using complex absorbing potentials
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(Received 22 February 2013; revised manuscript received 4 April 2013; published 1 May 2013)

Based on the nonequilibrium Green’s function (NEGF) coupled with density function theory (DFT), namely,
NEGF-DFT quantum transport theory, we propose an efficient formalism to calculate the transient current of
molecular devices under a step-like pulse from first principles. By combining NEGF-DFT with the complex
absorbing potential (CAP), the computational complexity of our formalism (NEGF-DFT-CAP) is proportional to
O(N ) where N is the number of time steps in the time-dependent transient current calculation. Compared with the
state-of-the-art algorithm of first-principles time-dependent calculation that scales with at least N2, this order N

technique drastically reduces the computational burden making it possible to tackle realistic molecular devices.
We have presented a detailed discussion on how to implement this scheme numerically from first principles. To
check the accuracy of our method, we carry out the benchmark calculation compared with NEGF-DFT formalism
and they agree well with each other. As an application of this method, we investigate the transient current of a
molecular device Al–C3–Al from first principles.
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I. INTRODUCTION

With the advance of nanofabrication techniques, nanode-
vices can be made using single atoms or molecules from the
bottom-up approach, which leads to a new field of molecular
electronics.1–7 Many experiments have been performed to
measure quantum transport properties of molecular devices.2–7

At the same time, many research efforts have been made to
understand these properties from first principles.8–11 At the
present stage, the quantitative agreement between theoretical
first-principles calculations and experimental results can be
reached in DC transport when the coupling between molecules
and contacts is strong.12–15 As for the weak coupling regime,
people have made some progress in recent years.16–20 Besides
the DC steady state problem, the question of how fast a
molecular device can turn on and off is also an important issue,
which has attracted a lot of research attention recently.21–31

In the design of a functional unit, it is important for
us to know the short time response of molecular devices
under switch on and off signal. Based on the dynamical
information, one can study molecular charging and molecular
discharging processes, which is helpful to characterize the
behaviors of molecular devices. This kind of question can be
answered by sending a step-like pulse from the electrodes
and studying the dynamic response of molecular devices.
For this problem, the exact solution of the transient current
was obtained by Wingreen et al.21 in the wide-band limit
using the nonequilibrium Green’s function (NEGF) approach.
Recently this solution has been extended to the regime of the
finite bandwidth of electrodes.25 When applying this exact
NEGF solution to molecular devices for the calculation of
the transient current as a function of time, there is a huge
computational cost due to the triple integral over energy.
In addition, there are many quasipoles near the energy axis
making the integration very difficult to converge. On the other
hand, the theoretical prediction of the transient dynamics of
molecular devices from first principles can be addressed by
numerically solving scattering wave function with the detailed

algorithm discussed in Ref. 24 or the nonequilibrium Green’s
function (NEGF) (with numerical details given in Ref. 31)
combined with time-dependent density functional theory
(TDDFT).32 These methods again are very time consuming
for the transient current calculation although the scaling
has been reduced from N3 to N2(log2N )2, where N is the
number of time steps. Therefore, to speed up the calculation,
various approximate schemes were proposed to calculate
time-dependent transient current of molecular devices such
as wide band approximation.28 Another approximate scheme
based on the exact NEGF solution was also proposed and
applied to calculate the transient current of molecular devices
which is very efficient and goes beyond the wideband limit.30

Despite these efforts, the time-dependent calculation of the
transient current for molecular devices is still a challenge
on the computational resources. Due to the importance of
molecular electronics, it is timely to overcome this problem so
that realistic transient dynamics calculations can be performed
on molecular devices from first principles. In this paper, we
propose a linear scaling O(N ) scheme to calculate the time-
dependent transient current by combining complex absorbing
potential (CAP) method with exact solution based on NEGF25

and DFT theory (NEGF-DFT-CAP).
The CAP was initially used to simulate the time-dependent

evolution of wave function of finite systems in one and two
dimensions.33 Recently, CAP was employed to study the trans-
port problem of molecular devices from first principles34–37

using a transmission free CAP.38 By adding an explicitly
energy-independent CAP in lead regions, the transport prob-
lem in a infinite open system can be reduced to that of a
finite simulation region. Moreover, one can obtain an effective
wideband-like formula to calculate DC transport quantities
such as the transmission coefficient. We note that in general
AC transport properties do not assume the wideband form
(effective self-energy does not depend on the energy) in the
presence of CAP. Fortunately, for the step-like pulse, we are
able to cast the exact NEGF solution for transient current into
a wideband form using CAP which enables us to speed up the
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calculation tremendously. In fact, when CAP is implemented
into the exact NEGF solution the amount of calculation scales
like cNn3 where N is the number of time steps, n is the
dimension of the Hamiltonian in the whole simulation region
including the CAP region, and c is a constant of order of a few
hundred. With this order N method at hand, the first-principles
transient current calculation of realistic molecular devices is
within the reach. We have applied our formalism to molecular
devices and carried out the benchmark calculation for transient
current on a one-dimensional atomic chain which agrees with
the result from exact numerical calculation. Furthermore, we
have investigated transient dynamics of a three-dimensional
(3D) molecular device and calculated transient current at two
different bias voltages. It was found that the transient current
involves many time scales showing that the wideband limit is
not a good approximation for molecular devices.

The paper is organized as follows. In Sec. II, we will first
introduce the formalism of the complex absorbing potential
(CAP) and briefly discuss its application in DC transport
calculations. Then we will discuss how to apply the CAP
to calculate the time-dependent transient current of molecular
devices under upward step-like pulse. In Sec. III, benchmark
comparisons with the NEGF-DFT method is presented. Then
the numerical calculation of the transient current of the
Al–C3–Al molecular device is given. Finally, Sec. IV gives
discussion and conclusion.

II. THEORETICAL FORMALISM

A. Complex absorbing potential

As shown in Fig. 1, a typical two terminal device consists
of a central scattering region connected by two semi-infinite
external leads along the transport z direction. The correspond-
ing Hamiltonian of the whole system can be expressed as a
tridiagonal block matrix

H =
⎡
⎣HLL HLC 0

HCL HCC HCR

0 HRC HRR

⎤
⎦ , (1)

where Hαα,α = L,R is the semi-infinite Hamiltonian of the
lead α. To study transport properties of this open system, one
is actually solving the scattering problem with infinite degrees
of freedom. In the framework of the NEGF, one calculates
various Green’s functions of the central region and the effect
of leads is taken into account by the self-energy. For instance,
the retarded Green’s function of the central region in an energy
domain is defined as

Gr
CC(E) =

(
E − HCC −

∑
α=L,R

�r
α(E)

)−1

, (2)

where �r
α(E) is the self-energy of lead α

�r
α(E) = HCαgr

αα(E)HαC, (3)

and gr
αα(E) is the retarded Green’s function of the correspond-

ing lead α

gr
αα(E) = (E − Hαα + i0+)−1. (4)

After obtaining the retarded Green’s function, one can cal-
culate various transport quantities, such as the transmission

Z

X

Y

FIG. 1. (Color online) Schematic plot of a two terminal molecular
device. The device consists of a central molecular part (green solid
cube) and two semi-infinite leads, which will extend to the ±∞. The
black solid lines represent the complex absorbing potential added to
both lead regions. The region enclosed by the red dashed line is the
central region; the purple dashed-dot line encloses the central region
plus complex absorbing potential region in the leads.

coefficient

T (E) = Tr
[
�LGr

CC�RGa
CC

]
. (5)

Here �α(E) = i[�r
α(E) − �a

α(E)] is the linewidth function of
the lead α. In the numerical calculation, the energy-dependent
self-energy can be calculated using the iterative or quadratic
eigenvalue approaches.39,40 To distinguish it from the CAP
method, we will refer to the above method as the exact method.

The idea of the CAP method is to replace the infinite system
by a finite system using the complex absorbing potential
that absorbs the incident wave function completely. In the
application of CAP to the quantum transport problem, CAP is
added to a finite lead region (called the CAP region) outside
of the central scattering region. Usually, the effectiveness of
CAP on absorbing the incident wave depends on the length of
the CAP region. The reduction of reflection can be improved
by increasing the length of the CAP region in a controlled
way. Note that the advantage of the CAP method over the
exact method relies on the fact that the CAP does not depends
on energy while the self-energy of the exact method does.
Using this property, the poles of the Green’s function can
be obtained easily when the CAP method is used. Therefore
the convergence problem of the energy integral in calculating
transient current is solved. In the numerical calculation, we
adopt an optimized transmission-free CAP given in Ref. 38

W (z) = h̄2

2m

(
2π

�z

)2

f (z), (6)

where f (z) is defined as

f (z) = 4

c2

[(
�z

z2 − 2z1 + z

)2

+
(

�z

z2 − z

)2

− 2

]
, (7)

and �z = z2 − z1 is the range of CAP along the transport z

direction, z1 and z2 are the starting and ending points of the
CAP region at each lead, respectively. Here c is a constant taken
to be 2.62, m is the mass of the electron. As shown in Fig. 1,
the CAP region starts from several buffer layers away from the
central molecular region. Going deep into the lead, the strength
of the absorbing potential increases and f (z) → ∞ when z

approaches the end point z2. This truncates the semi-infinite
lead into a finite one. Therefore, the numerical simulation
region becomes finite, i.e., the region enclosed by the purple
dashed-dot line in Fig. 1. In the first-principles calculation,
a linear combination of atomic orbitals (LCAO) basis set is
usually adopted. Then one has to calculate the matrix element

205401-2
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of the CAP in orbital space

Wμν =
∫

φ∗
μ(x,y,z)W (z)φν(x,y,z)dxdydz, (8)

where φμ is the atomic orbital.
Within the CAP method (all quantities are labeled with a

prime), the retarded Green’s function of lead α can be defined
as36

gr ′
αα(E) = (E − Hαα + iWα)−1. (9)

Since the lead is effectively truncated, H ′
αα = Hαα − iWα is

a matrix of finite dimension shown in Fig. 1. The retarded
Green’s function of the whole system including the CAP region
can be expressed as

Gr ′ =
(

E − H + i
∑

α

W ′
α

)−1

, (10)

with W ′
L = [ WL 0 0

0 0 0
0 0 0

]
and W ′

R = [ 0 0 0
0 0 0
0 0 WR

]
.

Although the lead region (including the CAP region) is
finite, we can still use the concept of self-energy and obtain an
effective retarded Green’s function of the central region within
the CAP method

Gr ′
CC =

(
E − HCC −

∑
α

�r ′
α

)−1

, (11)

where the self-energy �r ′
α is given by41

�r ′
α (E) = HCαgr ′

αα(E)HαC. (12)

It is easy to show that the linewidth function is written as42

�′
α = 2HCαgr ′

ααWαga′
ααHαC = 2HCαga′

ααWαgr ′
ααHαC. (13)

Since the self-energy calculated by the CAP method is the
same as that obtained from the traditional method,36 various
Green’s functions in the central (physically relevant) region
shown in Fig. 1 should also be the same as that given in
Eq. (2). At this level, the self-energy of the Green’s function
of the central scattering region Gr ′

CC depends on energy.
In the following, we give a simple derivation to show that
the transmission coefficient can be put into an effective wide
band limit (WBL) form in the CAP method. Starting from the
traditional definition of the transmission coefficient of Eq. (12)
together with Eq. (13)

T (E) = Tr
[
�′

LGr ′
CC�′

RGa′
CC

]
= 4Tr

[
HCLga′

LLWLgr ′
LLHLCGr ′

CCHCRgr ′
RR

×WRga′
RRHRCGa′

CC

]
= 4Tr

[
WLGr ′

LRWRGa′
RL] = 4Tr[W ′

LGr ′
W ′

RGa′]
, (14)

where we have defined the following Green’s function of the
whole system including the CAP region (see Appendix A for
the derivation)

Gr ′
LR = gr ′

LLHLCGr ′
CCHCRgr ′

RR. (15)

To calculate the transmission coefficient of Eq. (14), one
only needs to know Gr ′

, which is defined in the whole

system including the CAP region with W ′
α an effective energy-

independent self-energy. Note that this effective WBL form is
only valid in the DC case. In the case of AC transport, one may
not have a similar WBL form and one has to deal with it case
by case.

In terms of the lesser Green’s function, one can calculate
the charge density in the central region. We also start from the
traditional definition of the lesser Green’s function

G<
CC(E) = i

∑
α

fαGr ′
CC�′

αGa′
CC

= 2i
∑

α

fαGr ′
CαWαGa′

αC

= 2i
∑

α

fα[Gr ′
W ′

αGa′
]CC, (16)

where we have used Eq. (13) and Gr ′
Cα = Gr ′

CCHCαgr ′
αα [see

Eq. (3.5.13) in Ref. 41]; fα is the Fermi distribution function
of lead α.

B. Time-dependent transient current with upward
step-like pulse

The exact solution of time-dependent current for the step-
like pulse based on NEGF has been given by Maciejko et al.25

This formalism can be combined with DFT to calculate the
transient current in molecular devices.30,43 In the following, we
will combine the exact solution with DFT and CAP to obtain
an order O(N ) scheme (NEGF-DFT-CAP) for calculating
the time-dependent current under the upward step-like pulse.
Downward step-like and square-like pulses can also be treated
in a similar fashion.

To begin with, we will derive an equivalent time-dependent
current formula. Starting from the equation of motion for the
lesser Green’s function,44 we have

i
∂

∂t
G<

CC(t,t ′) = HCC(t)G<
CC(t,t ′) +

∫ t

0

[
�<(t,t1)Ga

CC(t1,t
′)

+�r (t,t1)G<(t1,t
′)
]
dt1, (17)

and

−i
∂

∂t ′
G<

CC(t,t ′)=G<
CC(t,t ′)HCC(t ′) +

∫ t

0

[
Gr

CC(t,t1)�<(t1,t
′)

+G<(t,t1)�a(t1,t
′)
]
dt1. (18)

Then subtracting Eq. (18) by Eq. (17) and setting t ′ = t , we
can arrive at

Iop(t) = HCC(t)G<
CC(t,t) − G<

CC(t,t)HCC(t) − i
∂

∂t
G<

CC(t,t),

(19)

where we have defined

Iop(t) ≡
∫ t

0

[
Gr

CC(t,t1)�<(t1,t) + G<(t,t1)�a(t1,t)

−�<(t,t1)Ga
CC(t1,t) − �r (t,t1)G<(t1,t)

]
dt1, (20)

which is a matrix. Note that the terminal current Iα(t) (Ref. 45)
can be obtained from Iop(t). To do that, two auxiliary projection
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matrices are introduced

�̄L =
⎡
⎣1L 0 0

0 0 0
0 0 0

⎤
⎦ , �̄R =

⎡
⎣0 0 0

0 0 0
0 0 1R

⎤
⎦ , (21)

where α denotes the outermost unit cell layer in buffer layers of
the central region and 1L/R is the unit matrix with a dimension
equal to the size of unit cell of left and right leads, respectively,
so that �r

L = �̄L�r�̄L. Finally we have

Iα(t) = Tr[�̄αIop(t)�̄α]. (22)

From Eq. (19), we can use the following formula to calculate
the time-dependent terminal current Iα(t),

Iα(t) = 2ReTr[�̄αHCC(t)G<
CC(t,t)�̄α]

− iTr[�̄α∂tG
<
CC(t,t)�̄α], (23)

where G<
CC(t,t) is the time-dependent lesser Green’s function

of the central region with equal time. To calculate Iα(t), one has
to know the time-dependent Hamiltonian H (t) and calculate
the time-dependent lesser Green’s function G<

CC(t,t). Since
the external bias is the upward step-like pulse in our problem,
then the time-dependent Hamiltonian can be obtained as
follows. When time t < 0, H (t < 0) = Heq is an equilibrium
Hamiltonian without bias and H (t � 0) = θ (t)Hneq that Hneq

is the self consistent nonequilibrium Hamiltonian under DC
bias. As for the time-dependent lesser Green’s function within
the CAP method, it can be written as

G<
CC(t,t) = 2i

∑
α

∫
dω

2π
f (ω)[A′

α(ω,t)W ′
αA′†

α (ω,t)]CC,

(24)

where we have used the spectral function A′
α(ω,t) (Ref. 45)

A′
α(ε,t) ≡

∫ t

−∞
dt ′eiε(t−t ′)ei

∫ t

t ′ dt1�α(t1)Gr ′
(t,t ′), (25)

where �α(t) is the time-dependent external bias. Note that
A′

α(ε,t) has the same dimension as Gr ′
that is defined in the

CAP method. Then the key issue here is how to calculate
quantity A′

α(ε,t) efficiently. From the analytic expression of
Aα(ε,t) given in Ref. 25, we can derive the spectral function
in the CAP form (see Appendix B for the derivation),

A′
α(ε,t) = Ḡr ′

(ε + �α) −
∫

dω

2πi

e−i(ω−ε)t Ḡr ′
(ω + �α)

ω − ε + �α − i0+

×
[

�α

ω − ε − i0+ + �G̃r ′
(ε)

]
, (26)

where � = Hneq − Heq is the internal potential change due to
the external bias. The quilibrium and nonequilibrium retarded
Green’s functions are defined as

G̃r ′
(ε) =

[
εI − Heq + i

∑
α

W ′
α

]−1

, (27)

Ḡr ′
(ε) =

[
εI − Hneq + i

∑
α

W ′
α

]−1

. (28)

Since W ′
α is energy independent, we can use follow-

ing eigenequations to construct the retarded Green’s

functions, [
Hneq − i

∑
α

W ′
α

]
|ψn〉 = εn|ψn〉, (29)

[
Hneq + i

∑
α

(W ′
α)†

]
|φn〉 = ε∗

n |φn〉, (30)

and [
Heq − i

∑
α

W ′
α

] ∣∣ψ0
n

〉 = ε0
n

∣∣ψ0
n

〉
, (31)

[
Heq + i

∑
α

(W ′
α)†

] ∣∣φ0
n

〉 = ε0∗
n

∣∣φ0
n

〉
. (32)

Then retarded Green’s functions can be constructed from their
eigenfunctions

G̃r ′
(ε) =

∑
n

∣∣ψ0
n

〉〈
φ0

n

∣∣(
ε − ε0

n + i0+) , (33)

Ḡr ′
(ε) =

∑
n

|ψn〉〈φn|
(ε − εn + i0+)

. (34)

Due to the presence of the time-dependent factor e−i(ω−ε)t

in A′
α , the integration in A′

α(ε,t) can be done analytically by
enclosing a contour in the lower half of the complex plane

A′
α(ε,t)

=
∑

n

|ψn〉〈φn|
(ε + �α − εn + i0+)

+
∑

n

ei(ε+�α−εn)t |ψn〉〈φn|
ε − εn + i0+

×
[

�α

ε + �α − εn + i0+ − �
∑
m

∣∣ψ0
m

〉〈
φ0

m

∣∣(
ε − ε0

m + i0+)
]

.

(35)

It is easy to check that in the initial state and asymptotic
long time limit (t → ∞) A′

α(t) is equal to G̃r ′
(ε) and Ḡr ′

(ε),
respectively. After obtaining the A′

α(t), one can calculate the
lesser Green’s function using Eq. (24) and hence the time-
dependent current from Eq. (23). Since A′

α(t) is expressed
as a summation form at any given time t , one only needs to
integrate the energy ω in Eq. (24) to obtain the time-dependent
lesser Green’s function and hence the transient current Iα(t).
We can estimate the number of operations in calculating the
time-dependent current Iα(t). For a given time, the calculation
only involves matrix multiplication as well as the integral over
ω which again can be done using the theorem of residue. Hence
the total number of operations is roughly cNn3 which is an
order N algorithm, where c is of order 200 due to the contour
integral on the complex plane, n is the dimension of the Green’s
function of the whole system including the CAP region, and
N is the number of time steps. To make the algorithm more
efficient, we need to keep n as small as possible. Clearly, for
molecular devices with large degrees of freedom, adding a
CAP region will not increase n very much. Hence the strength
of this algorithm is for large-scale calculations. In addition,
the CAP region can also be optimized. As demonstrated in
Ref. 36, the number of CAP unit cells can be reduced to six
for each lead as compared with the 30 unit cells used in the
calculation below.
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FIG. 2. (Color online) Schematic diagram of a molecular device
Al–C3–Al. The device consists of a three carbon atoms chain coupled
to the perfect aluminium atomic electrodes which extends to the
reservoirs at ±∞, where the current is collected.

The major steps for the numerical calculation can be
summarized as follows. We first prepare the initial equilibrium
and final nonequilibrium self-consistent Hamiltonian from DC
calculations. Then we construct the CAP matrix Wα with
respective to the lead. Once the CAP is constructed, one has to
compare the transmission coefficients with that obtained by the
exact method to get an idea of how long the CAP region should
be. With the good agreement on the transmission coefficient,
we can move on to calculate the time-dependent current using
A′

α(t).
It is worth mentioning that, in the above discussion, the

orthogonal basis set is implicitly assumed to expand the
Hamiltonian. So one has to orthogonalize the basis set if a
nonorthogonal basis such as an atomic orbital basis set (LCAO)
is used.43

III. NUMERICAL RESULTS

In this section, the implementation of our formalism and
numerical results of the transient current for the Al–C–Al
molecular device will be presented. The structure of the
Al–C3–Al molecular device is shown in Fig. 2. There are 75
atoms in the central scattering region and the distance between
the Al atom and the nearest carbon atom is equal to 3.78 a.u.
As for the electrodes, there are nine aluminum atoms in a
unit cell with a finite cross section along (100) direction in
the semi-infinite aluminum lead. Our numerical analysis is
based on the state-of-the-art first-principles quantum transport
package MATDCAL.46,47 Specifically, a linear combination of
atomic orbitals (LCAO) is employed to solve Kohn-Sham
equations. The exchange-correlation is treated at the local
density approximation level and the nonlocal norm-conserving
pseudopotential48 is used to define the atomic core. The density
matrix is constructed in orbital space and the effective potential
is obtained in real space by solving the Poisson equation. The
self-consistent NEGF-DFT iteration in MATDCAL package was
carried out until the numerical tolerance is less than 10−4 eV.
The initial equilibrium and final nonequilibrium Hamiltonian
were prepared using the MATDCAL package.

In the following, the case of an upward step-like pulse
[VL(t) = −VR(t) = θ (t)V ] applied on both leads will be
considered. To satisfy the current conservation condition,
we will plot the time-dependent current in terms of I (t) =
[IL(t) − IR(t)]/2 (Ref. 43).

To test the accuracy of our present scheme, we have
calculated the transient current using two different approaches.
One is based on the NEGF-DFT method proposed in Ref. 31
which is an order N2(log2N )2 algorithm and other one is our
proposed formalism in this paper termed as NEGF-DFT-CAP.
Here we take a one-dimensional Al–C1–Al atomic chain
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FIG. 3. (Color online) The time-dependent transient current I (t)
versus time with V = 0.0005 a.u. for one-dimensional atomic Al–
C1–Al chain. Blue solid line and red dashed line are time-transient-
dependent current calculated by using NEGF-DFT method and
NEGF-DFT-CAP method; black solid line is the DC current at the
steady state limit.

(where both leads are a one-dimensional Al chain) as a toy
molecular device and apply a step-like pulse to test the nu-
merical implementation of our formalism. As shown in Fig. 3,
the transient current calculated from two different methods
agree well with each other. In addition, the transient current
approaches to the DC steady state value obtained by using the
Landauer-Büttiker formula in the long time limit. The inset of
Fig. 3 shows the early time behavior of the transient current.

Now let us study a more realistic model Al–C3–Al system.
First of all, we have to compare the transmission coefficient
by using the CAP method and exact method to make sure that
the CAP potential is added correctly. As you can see in Fig. 4,
the CAP result agrees well with that calculated by the exact
method.

After examining the accuracy of the transmission coeffi-
cient of the CAP method, we are ready to study the transient

−0.35 −0.25 −0.15 −0.05 0.02
0

0.5

1

1.5

2

2.5

Energy(a.u.)

T
ra
ns
m
is
si
on

 

 

Exact
CAP (30 units)

FIG. 4. (Color online) The comparison of the transmission
coefficient of a carbon chain sandwiched between Al(100) leads.
The numerical results calculated by using CAP method with 30 unit
cells in the lead region (blue solid line) is compared with the exact
method (red dashed line).
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FIG. 5. (Color online) The time-dependent transient current I (t)
versus time with different bias voltages for a Al–C3–Al molecular
device. The blue and black solid lines correspond to the time-
dependent transient current and DC current at a steady state for
V = 0.0025 a.u., respectively. The red solid and black dashed lines
are the time-dependent transient current and DC current at steady
state for V = 0.01 a.u., respectively.

current of the Al–C3–Al molecular junction. We calculate
the transient current under two different bias voltages. The
numerical results are plotted in Fig. 5. We have serval
observations: (1) the switch-on time is roughly 2 fs; (2) the
relaxation time is roughly 210 fs for V = 0.0025 a.u. and
320 fs for V = 0.01 a.u.; (3) the transient current is on the same
order of magnitude as that of the DC steady state limit. In the
early time, there are some irregular oscillations in the transient
current. At the long time limit, the transient current approaches
to the correct DC limit. Moreover, more oscillations occur with
the increase of bias voltage. The nature of the oscillation can
be attributed to the resonant states of the system.30

IV. SUMMARY

To summarize, we have proposed an order N first-principle
formalism to study the dynamical response of molecular
devices due to the time-dependent step-like external bias. Our
formalism is based on NEGF combined with DFT as well the
CAP method. The use of the CAP allows us to calculate the
transient current efficiently compared to previous NEGF-DFT
schemes. Detailed computational procedures for firstprinciples
transient current calculation were discussed which are very
easy to implement. As an illustration, we have calculated the
transient current of Al–C3–Al molecular devices from first
principles. We wish to emphasize that one has to use an
orthogonal basis set to make the implementation simple. In
addition, our NEGF-DFT-CAP formalism is aimed to study
the transient current under step-like pulse. In addition, we have
assumed that the Coulomb interaction changes instantly with
the external bias, i.e., the time-dependent Hamiltonian H (t �
0) = θ (t)Hneq , where Hneq is calculated from the NEGF-DFT
formalism. We hope to go beyond this approximation in future
works.
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APPENDIX A: DERIVATIONS FOR Gr ′
L R

According to the definition of the retarded Green’s function,⎡
⎣

(
gr ′

LL

)−1 −HLC 0
−HCL E − HCC −HCR

0 −HRC

(
gr ′

RR

)−1

⎤
⎦

⎡
⎣ Gr ′

LL Gr ′
LC Gr ′

LR

Gr ′
CL Gr ′

CC Gr ′
CR

Gr ′
RL Gr ′

RC Gr ′
RR

⎤
⎦

=
⎡
⎣ 1L 0 0

0 1C 0
0 0 1R

⎤
⎦ , (A1)

we have

Gr ′
LR = gr ′

LLHLCGr ′
CR. (A2)

To find Gr ′
CR we note that the advanced Green’s function can

be obtained by changing superscript r into a in Eq. (A1). We
have

Ga′
RC = ga′

RRHRCGa′
CC, Gr ′

CR = Gr ′
CCHCRgr ′

RR, (A3)

where we have used the fact that Gr ′
CR = (Ga′

RC)†. Finally we
combine Eqs. (A1) and (A3) to arrive at

Gr ′
LR = gr ′

LLHLCGr ′
CCHCRgr ′

RR. (A4)

APPENDIX B: DERIVATIONS FOR A′
αCC

In this Appendix, we will derive the expression of A′
αCC

in the central region within the CAP method. Starting from
Eq. (26), we have

A′
αCC

(ε,t) = Ḡr ′
CC(ε + �α) −

∫
dω

2πi

e−i(ω−ε)t

ω − ε + �α − i0+

×
[
Ḡr ′

CC(ω + �α)
�α

ω − ε − i0+ + B0

]
, (B1)

with

B0 ≡
∑

β=L,C,R

Ḡr ′
Cβ(ω + �α)�ββG̃r ′

βC(ε), (B2)

where �CC is the internal potential change in the central region
due to the external bias in the leads and �ββ = �β1β with
β = L,R is the bias applied in the lead β. Furthermore, B0

can be separated into two parts,

B0 = Ḡr ′
CC�CCG̃r ′

CC +
∑

β=L,R

�βḠr ′
CβG̃r ′

βC

= Ḡr ′
CC�CCG̃r ′

CC +
∑

β=L,R

�βḠr ′
CCHCβḡr ′

ββ g̃r ′
ββHβCG̃r ′

CC,

(B3)

where we have used Ḡr ′
Cβ = Ḡr ′

CCHCβḡr ′
ββ and G̃r ′

βC =
g̃r ′

ββHβCG̃r ′
CC . According to the retarded Green’s function of
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the lead α in Eq. (9), we have

ḡr ′
ββ g̃r ′

ββ = 1

ω + �α − �β − H ′
ββ

1

ε − H ′
ββ

= 1

ε − ω − �α + �β

×
[

1

ω + �α − �β − H ′
ββ

− 1

ε − H ′
ββ

]
.

Therefore, B0 becomes

B0 = Ḡr ′
CC�CCG̃r ′

CC −
∑

β=L,R

�βḠr ′
CCϒ̃R

αβ(ε,ω)G̃r ′
CC, (B4)

where we have defined

ϒ̃R
αβ(ε,ω) ≡ �̃R′

β (ε) − �̃R′
β (ω + �α − �β)

ε − ω − �α + �β

. (B5)

Finally, plugging Eq. (B4) into Eq. (B1), one can easily find
that the final expression for A′

αCC
is the same as the expression

for AαCC
given in Ref. 25.
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