18,943 research outputs found

    A systematic observational study on Galactic interstellar ratio 18O/17O: I. C18O and C17O J=1-0 data analysis

    Get PDF
    The interstellar oxygen isotopic ratio of 18O/17O can reflect the relative amount of the secular enrichment by ejecta from high-mass versus intermediate-mass stars. Previous observations found a Galactic gradient of 18O/17O, i.e., low ratios in the Galactic center and large values in the Galactic disk, which supports the insideout formation scenario of our Galaxy. However, the observed objects are not many and, in particular, not so many at large galactocentric distances. Thus we started a systematic study on Galactic interstellar 18O/17O, through observations of C18O and C17O multi-transition lines toward a large sample of 286 sources (at least one order of magnitude larger than previous ones), from the Galactic center region to the far outer Galaxy (~22 kpc). Here we present our observations of J=1-0 lines of C18O and C17O, with the ARO12m and the IRAM 30m telescope. We detected successfully both C18O and C17O 1-0 lines for 34 sources among our IRAM30m sample of 50 targets and for 166 sources among our ARO12m sample of 260 targets. The C18O optical depth effect on our ratio results, evaluated by fitting results of C17O spectra with hyperfine components and our RADEX non-LTE model calculation for the strongest source, was found to be insignificant. Beam dilution does not seem to be a problem either, which was supported by the fact of no systematic variation between the isotopic ratio and the heliocentric distance, and consistent measured ratios from two telescopes for most of those detected sources. Our results, though there are still very few detections made for sources in the outer Galaxy, confirm the apparent 18O/17O gradient of 18O/17O = (0.10+-0.03)R_GC+(2.95+-0.30), with a Pearson's rank correlation coefficient R = 0.69. This is supported by the newest Galactic chemical evolution model including the impact of massive stellar rotators and novae.Comment: 35 pages, 7 figures, published in ApJ

    Precise determination of ground-state hyperfine splitting and calculation of Zeeman coefficients for 171Yb+ microwave frequency standard

    Full text link
    We report precise measurement of the hyperfine splitting and calculation of the Zeeman coefficients of the 171^{171}Yb+^+ ground state. The absolute hyperfine splitting frequency is measured using high-resolution laser-microwave double-resonance spectroscopy at 0.1 mHz level, and evaluated using more accurate Zeeman coefficients. These Zeeman coefficients are derived using Land\'{e} gJg_J factors calculated by two atomic-structure methods, multiconfiguration Dirac-Hartree-Fock, and multireference configuration interaction. The cross-check of the two calculations ensures an accuracy of the Zeeman coefficients at 10−210^{-2} Hz/G2^2 level. The results provided in this paper improve the accuracy and reliability of the second-order Zeeman shift correction, thus further improving the accuracy of the microwave frequency standards based on 171^{171}Yb+^+. The high-precision hyperfine splitting and Zeeman coefficients could also support could also support further experiments to improve the constraints of fundamental constants through clock frequency comparison of the Yb+^+ system

    Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)

    Full text link
    Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi -> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be 0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.

    Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses

    Get PDF
    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 100  μJ per steradian in the laser specular direction at an optimal preplasma scale length around 40–50  μm. Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas
    • …
    corecore