518,855 research outputs found

    Peering into the formation history of β Pictoris b with VLTI/GRAVITY long-baseline interferometry

    Get PDF
    Context. β Pictoris is arguably one of the most studied stellar systems outside of our own. Some 30 yr of observations have revealed a highly-structured circumstellar disk, with rings, belts, and a giant planet: β Pictoris b. However very little is known about how this system came into being. Aims. Our objective is to estimate the C/O ratio in the atmosphere of β Pictoris b and obtain an estimate of the dynamical mass of the planet, as well as to refine its orbital parameters using high-precision astrometry. Methods. We used the GRAVITY instrument with the four 8.2 m telescopes of the Very Large Telescope Interferometer to obtain K-band spectro-interferometric data on β Pic b. We extracted a medium resolution (R = 500) K-band spectrum of the planet and a high-precision astrometric position. We estimated the planetary C/O ratio using two different approaches (forward modeling and free retrieval) from two different codes (ExoREM and petitRADTRANS, respectively). Finally, we used a simplified model of two formation scenarios (gravitational collapse and core-accretion) to determine which can best explain the measured C/O ratio. Results. Our new astrometry disfavors a circular orbit for β Pic b (e = 0.15_(−0.04)^(+0.05)). Combined with previous results and with HIPPARCOS/Gaia measurements, this astrometry points to a planet mass of M = 12.7 ± 2.2 M_(Jup). This value is compatible with the mass derived with the free-retrieval code petitRADTRANS using spectral data only. The forward modeling and free-retrieval approches yield very similar results regarding the atmosphere of β Pic b. In particular, the C/O ratios derived with the two codes are identical (0.43 ± 0.05 vs. 0.43_(−0.03)^(+0.04)). We argue that if the stellar C/O in β Pic is Solar, then this combination of a very high mass and a low C/O ratio for the planet suggests a formation through core-accretion, with strong planetesimal enrichment

    Statistical study of free magnetic energy and flare productivity of solar active regions

    Full text link
    Photospheric vector magnetograms from Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both non-linear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with ARs' flare index (FI) and find that there is a weak correlation (<60%<60\%) between FME and FI. FME shows slightly improved flare predictability relative to total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.Comment: The paper was submitted to ApJ and it is accepted no

    A Study of the Water Cherenkov Calorimeter

    Full text link
    The novel idea of water Cherenkov calorimeter made of water tanks as the next generation neutrino detector for nu factories and nu beams is investigated. A water tank prototype with a dimension of 1*1*13m^3 is constructed, its performance is studied and compared with a GEANT4 based Monte Carlo simulation. By using measured parameters of the water tank, including the light collection efficiency, attenuation length, angular dependent response etc, a detailed Monte Carlo simulation demonstrates that the detector performance is excellent for identifying neutrino charged current events while rejecting neutral current and wrong-flavor backgrounds.Comment: 19 pages, 14 figures, submitted to NI

    Periodicities in Solar Coronal Mass Ejections

    Full text link
    Mid-term quasi-periodicities in solar coronal mass ejections (CMEs) during the most recent solar maximum cycle 23 are reported here for the first time using the four-year data (February 5, 1999 to February 10, 2003) of the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). In parallel, mid-term quasi-periodicities in solar X-ray flares (class >M5.0) from the Geosynchronous Operational Environment Satellites (GOES) and in daily averages of Ap index for geomagnetic disturbances from the World Data Center (WDC) at the International Association for Geomagnetism and Aeronomy (IAGA) are also examined for the same four-year time span. Several conceptual aspects of possible equatorially trapped Rossby-type waves at and beneath the solar photosphere are discussed.Comment: Accepted by MNRAS, 6 figure

    Likelihood Analysis of Repeating in the BATSE Catalogue

    Get PDF
    I describe a new likelihood technique, based on counts-in-cells statistics, that I use to analyze repeating in the BATSE 1B and 2B catalogues. Using the 1B data, I find that repeating is preferred over non-repeating by 4.3:1 odds, with a well-defined peak at 5-6 repetitions per source. I find that the post-1B data are consistent with the repeating model inferred from the 1B data, after taking into account the lower fraction of bursts with well-determined positions. Combining the two data sets, I find that the odds favoring repeating over non-repeating are almost unaffected at 4:1, with a narrower peak at 5 repetitions per source. I conclude that the data sets are consistent both with each other and with repeating, and that for these data sets the odds favor repeating.Comment: 5 pages including 3 encapsulated figures, as a uuencoded, gzipped, Postscript file. To appear in Proc. of the 1995 La Jolla workshop ``High Velocity Neutron Stars and Gamma-Ray Bursts'' eds. Rothschild, R. et al., AIP, New Yor
    • …
    corecore