383,728 research outputs found
QCD Factorization for Quarkonium Production in Hadron Collions at Low Transverse Momentum
Inclusive production of a quarkonium in hadron collisions at low
transverse momentum can be used to extract various
Transverse-Momentum-Dependent(TMD) gluon distributions of hadrons, provided the
TMD factorization for the process holds. The factorization involving
unpolarized TMD gluon distributions of unpolarized hadrons has been examined
with on-shell gluons at one-loop level. In this work we study the factorization
at one-loop level with diagram approach in the most general case, where all TMD
gluon distributions at leading twist are involved. We find that the
factorization holds and the perturbative effects are represented by one
perturbative coefficient. Since the initial gluons from hadrons are off-shell
in general, there exists the so-called super-leading region found recently. We
find that the contributions from this region can come from individual diagrams
at one-loop level, but they are cancelled in the sum. Our factorized result for
the differential cross-section is explicitly gauge-invariant.Comment: discussions and references are added. Published version on Phys. Rev.
Linear Gaussian Affine Term Structure Models with Unobservable Factors: Calibration and Yield Forecasting
This paper provides a significant numerical evidence for out-of-sample forecasting ability of linear Gaussian interest rate models with unobservable underlying factors. We calibrate one, two and three factor linear Gaussian models using the Kalman filter on two different bond yield data sets and compare their out-of-sample
forecasting performance. One step ahead as well as four step ahead out-of-sample forecasts are analyzed based on the weekly data. When evaluating the one step ahead forecasts, it is shown that a one factor model may be adequate when only the short-dated or only the long-dated yields are considered, but two and three factor
models performs significantly better when the entire yield spectrum is considered. Furthermore, the results demonstrate that the predictive ability of multi-factor models remains intact far
ahead out-of-sample, with accurate predictions available up to one year after the last calibration for one data set and up to three
months after the last calibration for the second, more volatile data set. The experimental data denotes two different periods with different yield volatilities, and the stability of model
parameters after calibration in both the cases is
deemed to be both significant and practically useful. When it comes to four step ahead predictions, the quality of forecasts deteriorates for all models, as can be expected, but the advantage of using a multi-factor model as compared to a one factor model is still significant.
In addition to the empirical study above, we also suggest a nonlinear filter based on linear programming for improving the term structure matching at a given point in time. This method,
when used in place of a Kalman filter update, improves the term structure fit significantly with a minimal added computational overhead. The improvement achieved with the proposed method is
illustrated for out-of-sample data for both the data sets. This method can be used to model a parameterized yield curve consistently with the underlying short rate dynamics
Polarized Curvature Radiation in Pulsar Magnetosphere
The propagation of polarized emission in pulsar magnetosphere is investigated
in this paper. The polarized waves are generated through curvature radiation
from the relativistic particles streaming along curved magnetic field lines and
co-rotating with the pulsar magnetosphere. Within the 1/{\deg} emission cone,
the waves can be divided into two natural wave mode components, the ordinary
(O) mode and the extraord nary (X) mode, with comparable intensities. Both
components propagate separately in magnetosphere, and are aligned within the
cone by adiabatic walking. The refraction of O-mode makes the two components
separated and incoherent. The detectable emission at a given height and a given
rotation phase consists of incoherent X-mode and O-mode components coming from
discrete emission regions. For four particle-density models in the form of
uniformity, cone, core and patches, we calculate the intensities for each mode
numerically within the entire pulsar beam. If the co-rotation of relativistic
particles with magnetosphere is not considered, the intensity distributions for
the X-mode and O-mode components are quite similar within the pulsar beam,
which causes serious depolarization. However, if the co-rotation of
relativistic particles is considered, the intensity distributions of the two
modes are very different, and the net polarization of out-coming emission
should be significant. Our numerical results are compared with observations,
and can naturally explain the orthogonal polarization modes of some pulsars.
Strong linear polarizations of some parts of pulsar profile can be reproduced
by curvature radiation and subsequent propagation effect.Comment: 12 pages, 9 figures, Accepted for publication in MNRA
On the amplification of magnetic fields in cosmic filaments and galaxy clusters
The amplification of primordial magnetic fields via a small-scale turbulent
dynamo during structure formation might be able to explain the observed
magnetic fields in galaxy clusters. The magnetisation of more tenuous
large-scale structures such as cosmic filaments is more uncertain, as it is
challenging for numerical simulations to achieve the required dynamical range.
In this work, we present magneto-hydrodynamical cosmological simulations on
large uniform grids to study the amplification of primordial seed fields in the
intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In
the ICM, we confirm that turbulence caused by structure formation can produce a
significant dynamo amplification, even if the amplification is smaller than
what is reported in other papers. In the WHIM inside filaments, we do not
observe significant dynamo amplification, even though we achieve Reynolds
numbers of . The maximal amplification for large
filaments is of the order of for the magnetic energy, corresponding
to a typical field of a few starting from a primordial weak field
of G (comoving). In order to start a small-scale dynamo, we found
that a minimum of resolution elements across the virial radius of
galaxy clusters was necessary. In filaments we could not find a minimum
resolution to set off a dynamo. This stems from the inefficiency of supersonic
motions in the WHIM in triggering solenoidal modes and small-scale twisting of
magnetic field structures. Magnetic fields this small will make it hard to
detect filaments in radio observations.Comment: MNRAS accepted, in press. 18 pages, 18 Figures. New version to match
with the one published in MNRAS. Updated publication list and footnote added
to the title as obituary notic
- …
