99,748 research outputs found

    SystemC-A modeling of an automotive seating vibration isolation system

    No full text
    A modeling methodology for mixed physical domains system in a new modelling Language is presented. The system is automotive seating vibration isolation system with electronic control. It is described and simulated in SystemCA, an extended version of SystemC which provides analogue, mixed-signal and mixed-domain modeling capabilities. Results show that SystemC-A provides efficient means to model and investigate performance of complex mixed-domain systems for automotive applications

    Dynamic changes during the treatment of pancreatic cancer

    Get PDF
    This manuscript follows a single patient with pancreatic adenocarcinoma for a five year period, detailing the clinical record, pathology, the dynamic evolution of molecular and cellular alterations as well as the responses to treatments with chemotherapies, targeted therapies and immunotherapies. DNA and RNA samples from biopsies and blood identified a dynamic set of changes in allelic imbalances and copy number variations in response to therapies. Organoid cultures established from biopsies over time were employed for extensive drug testing to determine if this approach was feasible for treatments. When an unusual drug response was detected, an extensive RNA sequencing analysis was employed to establish novel mechanisms of action of this drug. Organoid cell cultures were employed to identify possible antigens associated with the tumor and the patient\u27s T-cells were expanded against one of these antigens. Similar and identical T-cell receptor sequences were observed in the initial biopsy and the expanded T-cell population. Immunotherapy treatment failed to shrink the tumor, which had undergone an epithelial to mesenchymal transition prior to therapy. A warm autopsy of the metastatic lung tumor permitted an extensive analysis of tumor heterogeneity over five years of treatment and surgery. This detailed analysis of the clinical descriptions, imaging, pathology, molecular and cellular evolution of the tumors, treatments, and responses to chemotherapy, targeted therapies, and immunotherapies, as well as attempts at the development of personalized medical treatments for a single patient should provide a valuable guide to future directions in cancer treatment

    Comparative energetic assessment of methanol production from COâ‚‚: chemical versus electrochemical process

    Get PDF
    Emerging emission-to-liquid (eTL) technologies that produce liquid fuels from COâ‚‚ are a possible solution for both the global issues of greenhouse gas emissions and fossil fuel depletion. Among those technologies, COâ‚‚ hydrogenation and high-temperature COâ‚‚ electrolysis are two promising options suitable for large-scale applications. In this study, two COâ‚‚ -to-methanol conversion processes, i.e., production of methanol by COâ‚‚ hydrogenation and production of methanol based on high-temperature COâ‚‚ electrolysis, are simulated using Aspen HYSYS. With Aspen Energy Analyzer, heat exchanger networks are optimized and minimal energy requirements are determined for the two different processes. The two processes are compared in terms of energy requirement and climate impact. It is found that the methanol production based on COâ‚‚ electrolysis has an energy efficiency of 41%, almost double that of the COâ‚‚ hydrogenation process provided that the required hydrogen is sourced from water electrolysis. The hydrogenation process produces more COâ‚‚ when fossil fuel energy sources are used, but can result in more negative COâ‚‚ emissions with renewable energies. The study reveals that both of the eTL processes can outperform the conventional fossil-fuel-based methanol production process in climate impacts as long as the renewable energy sources are implemented
    • …
    corecore