91,388 research outputs found

    A More Precise Extraction of |V_{cb}| in HQEFT of QCD

    Full text link
    The more precise extraction for the CKM matrix element |V_{cb}| in the heavy quark effective field theory (HQEFT) of QCD is studied from both exclusive and inclusive semileptonic B decays. The values of relevant nonperturbative parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD. Using the most recent experimental data for B decay rates, |V_{cb}| is updated to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l \nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l \nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

    Lifetime Difference and Endpoint effect in the Inclusive Bottom Hadron Decays

    Full text link
    The lifetime differences of bottom hadrons are known to be properly explained within the framework of heavy quark effective field theory(HQEFT) of QCD via the inverse expansion of the dressed heavy quark mass. In general, the spectrum around the endpoint region is not well behaved due to the invalidity of 1/mQ1/m_Q expansion near the endpoint. The curve fitting method is adopted to treat the endpoint behavior. It turns out that the endpoint effects are truly small and the explanation on the lifetime differences in the HQEFT of QCD is then well justified. The inclusion of the endpoint effects makes the prediction on the lifetime differences and the extraction on the CKM matrix element Vcb|V_{cb}| more reliable.Comment: 11 pages, Revtex, 10 figures, 6 tables, published versio

    Calibration of LAMOST Stellar Surface Gravities Using the Kepler Asteroseismic Data

    Full text link
    Asteroseismology is a powerful tool to precisely determine the evolutionary status and fundamental properties of stars. With the unprecedented precision and nearly continuous photometric data acquired by the NASA Kepler mission, parameters of more than 104^4 stars have been determined nearly consistently. However, most studies still use photometric effective temperatures (Teff) and metallicities ([Fe/H]) as inputs, which are not sufficiently accurate as suggested by previous studies. We adopted the spectroscopic Teff and [Fe/H] values based on the LAMOST low-resolution spectra (R~1,800), and combined them with the global oscillation parameters to derive the physical parameters of a large sample of stars. Clear trends were found between {\Delta}logg(LAMOST - seismic) and spectroscopic Teff as well as logg, which may result in an overestimation of up to 0.5 dex for the logg of giants in the LAMOST catalog. We established empirical calibration relations for the logg values of dwarfs and giants. These results can be used for determining the precise distances to these stars based on their spectroscopic parameters.Comment: 22 pages, 13 figures and 3 tables, accepted for publication in Astronomical Journal. Table 3 is available at http://lwang.info/research/kepler_lamost

    Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory

    Full text link
    We have constructed a heavy baryon effective field theory with photon as an external field in accordance with the symmetry requirements similar to the heavy quark effective field theory. By treating the heavy baryon and anti-baryon equally on the same footing in the effective field theory, we have calculated the spin polarisabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon at third order and at fourth-order of the spin-dependent Compton scattering. At leading order (LO), our results agree with the corresponding results of the heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the results show a large correction to the ones in the heavy baryon chiral perturbation theory due to baryon-antibaryon coupling terms. The low energy theorem is satisfied both at LO and at NLO. The contributions arising from the heavy baryon-antibaryon vertex were found to be significant and the results of the polarisabilities obtained from our theory is much closer to the experimental data.Comment: 21pages, title changed, minimal correction

    Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory

    Full text link
    Based on a large component QCD derived directly from full QCD by integrating over the small components of quark fields with p<E+mQ|{\bf p}| < E + m_Q, an alternative quantization procedure is adopted to establish a basic theoretical framework of heavy quark effective field theory (HQEFT) in the sense of effective quantum field theory. The procedure concerns quantum generators of Poincare group, Hilbert and Fock space, anticommutations and velocity super-selection rule, propagator and Feynman rules, finite mass corrections, trivialization of gluon couplings and renormalization of Wilson loop. The Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated. Some new symmetries in the infinite mass limit are discussed. Weak transition matrix elements and masses of hadrons in HQEFT are well defined to display a manifest spin-flavor symmetry and 1/mQ1/m_Q corrections. A simple trace formulation approach is explicitly demonstrated by using LSZ reduction formula in HQEFT, and shown to be very useful for parameterizing the transition form factors via 1/mQ1/m_Q expansion. As the heavy quark and antiquark fields in HQEFT are treated on the same footing in a fully symmetric way, the quark-antiquark coupling terms naturally appear and play important roles for simplifying the structure of transition matrix elements, and for understanding the concept of `dressed heavy quark' - hadron duality. In the case that the `longitudinal' and `transverse' residual momenta of heavy quark are at the same order of power counting, HQEFT provides a consistent approach for systematically analyzing heavy quark expansion in terms of 1/mQ1/m_Q. Some interesting features in applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio

    B(s),D(s)π,K,η,ρ,K,ω,ϕB_{(s)},D_{(s)} \to \pi, K, \eta, \rho, K^*, \omega, \phi Transition Form Factors and Decay Rates with Extraction of the CKM parameters Vub|V_{ub}|, Vcs|V_{cs}|, Vcd|V_{cd}|

    Full text link
    A systematic calculation for the transition form factors of heavy to light mesons (B,Bs,D,Dsπ,K,η,ρ,K,ω,ϕB,B_s,D,D_s \to \pi, K, \eta, \rho, K^*, \omega, \phi) is carried out by using light-cone sum rules in the framework of heavy quark effective field theory. The heavy quark symmetry at the leading order of 1/mQ1/m_Q expansion enables us to reduce the independent wave functions and establish interesting relations among form factors. Some relations hold for the whole region of momentum transfer. The meson distribution amplitudes up to twist-4 including the contributions from higher conformal spin partial waves and light meson mass corrections are considered. The CKM matrix elements Vub|V_{ub}|, Vcs|V_{cs}| and Vcd|V_{cd}| are extracted from some relatively well-measured decay channels. A detailed prediction for the branching ratios of heavy to light meson decays is then presented. The resulting predictions for the semileptonic and radiative decay rates of heavy to light mesons (B,Bs,D,Dsπ,K,η,ρ,K,ω,ϕB,B_s,D,D_s \to \pi, K, \eta, \rho, K^*, \omega, \phi) are found to be compatible with the current experimental data and can be tested by more precise experiments at B-factory, LHCb, BEPCII and CLEOc.Comment: 23 pages, 32 figures, 25 tables,published version, minor corrections and references adde

    Origin of superconductivity in nominally "undoped" T'-La2x_{2-x}Yx_{x}CuO4_{4} films

    Full text link
    We have systematically studied the transport properties of the La2x_{2-x}Yx_{x}CuO4_{4}(LYCO) films of T'-phase (0.05x0.300.05\leq x \leq 0.30). In this nominally "undoped" system, superconductivity was acquired in certain Y doping range (0.10x0.200.10\leq x \leq 0.20). Measurements of resistivity, Hall coefficients in normal states and resistive critical field (Hc2ρH^\rho_{c2})in superconducting states of the T'-LYCO films show the similar behavior as the known Ce-doped n-type cuprate superconductors, indicating the intrinsic electron-doping nature. The charge carriers are induced by oxygen deficiency. Non-superconducting Y-doped Pr- or Nd-based T'-phase cuprate films were also investigated for comparison, suggesting the crucial role of the radii of A-site cations in the origin of superconductivity in the nominally "undoped" cuptates. Based on a reasonable scenario in the microscopic reduction process, we put forward a self-consistent interpretation of these experimental observations.Comment: 8 pages, 9 figure
    corecore