138 research outputs found

    Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

    Get PDF
    summary:A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are showed by using numerical and experimental simulations

    An Efficient Feature Extraction Scheme for Mobile Anti-Shake in Augmented Reality

    Get PDF
    In recent years, augmented reality on mobile devices has become popular. Mobile shakes are the most typical type of interference in mobile augmented reality. To negate such interference, anti-shake is an urgent requirement. To enhance anti-shake efficiency, we propose an efficient feature extraction scheme for mobile anti-shake in augmented reality. The scheme directly detects corners to avoid the non-extreme constraint such that the efficiency of feature extraction is improved. Meanwhile, the scheme only updates the added corners during mobile shakes, which improves the accuracy of feature extraction. In the experiments, the memory consumption of existing methods is almost double compared to that in our scheme. Further, the runtime of our scheme is only half of the runtime of the existing methods. The experimental results demonstrate that our scheme performs better than the existing classic methods on mobile anti-shake in terms of memory consumption, efficiency, and accuracy

    A novel integrated method of detection-grasping for specific object based on the box coordinate matching

    Full text link
    To better care for the elderly and disabled, it is essential for service robots to have an effective fusion method of object detection and grasp estimation. However, limited research has been observed on the combination of object detection and grasp estimation. To overcome this technical difficulty, a novel integrated method of detection-grasping for specific object based on the box coordinate matching is proposed in this paper. Firstly, the SOLOv2 instance segmentation model is improved by adding channel attention module (CAM) and spatial attention module (SAM). Then, the atrous spatial pyramid pooling (ASPP) and CAM are added to the generative residual convolutional neural network (GR-CNN) model to optimize grasp estimation. Furthermore, a detection-grasping integrated algorithm based on box coordinate matching (DG-BCM) is proposed to obtain the fusion model of object detection and grasp estimation. For verification, experiments on object detection and grasp estimation are conducted separately to verify the superiority of improved models. Additionally, grasping tasks for several specific objects are implemented on a simulation platform, demonstrating the feasibility and effectiveness of DG-BCM algorithm proposed in this paper

    Compact Twice Fusion Network for Edge Detection

    Full text link
    The significance of multi-scale features has been gradually recognized by the edge detection community. However, the fusion of multi-scale features increases the complexity of the model, which is not friendly to practical application. In this work, we propose a Compact Twice Fusion Network (CTFN) to fully integrate multi-scale features while maintaining the compactness of the model. CTFN includes two lightweight multi-scale feature fusion modules: a Semantic Enhancement Module (SEM) that can utilize the semantic information contained in coarse-scale features to guide the learning of fine-scale features, and a Pseudo Pixel-level Weighting (PPW) module that aggregate the complementary merits of multi-scale features by assigning weights to all features. Notwithstanding all this, the interference of texture noise makes the correct classification of some pixels still a challenge. For these hard samples, we propose a novel loss function, coined Dynamic Focal Loss, which reshapes the standard cross-entropy loss and dynamically adjusts the weights to correct the distribution of hard samples. We evaluate our method on three datasets, i.e., BSDS500, NYUDv2, and BIPEDv2. Compared with state-of-the-art methods, CTFN achieves competitive accuracy with less parameters and computational cost. Apart from the backbone, CTFN requires only 0.1M additional parameters, which reduces its computation cost to just 60% of other state-of-the-art methods. The codes are available at https://github.com/Li-yachuan/CTFN-pytorch-master.Comment: Manuscript submitted to a Springer journa

    Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The zinc uptake regulator Zur is a Zn<sup>2+</sup>-sensing metalloregulatory protein involved in the maintenance of bacterial zinc homeostasis. Up to now, regulation of zinc homeostasis by Zur is poorly understood in <it>Y. pestis</it>.</p> <p>Results</p> <p>We constructed a <it>zur </it>null mutant of <it>Y. pestis </it>biovar <it>microtus </it>strain 201. Microarray expression analysis disclosed a set of 154 Zur-dependent genes of <it>Y. pestis </it>upon exposure to zinc rich condition. Real-time reverse transcription (RT)-PCR was subsequently used to validate the microarray data. Based on the 154 Zur-dependent genes, predicted regulatory Zur motifs were used to screen for potential direct Zur targets including three putative operons <it>znuA, znuCB </it>and <it>ykgM</it>-<it>RpmJ2</it>. The LacZ reporter fusion analysis verified that Zur greatly repressed the promoter activity of the above three operons. The subsequent electrophoretic mobility shift assay (EMSA) demonstrated that a purified Zur protein was able to bind to the promoter regions of the above three operons. The DNase I footprinting was used to identify the Zur binding sites for the above three operons, verifying the Zur box sequence as predicted previously in Îł-Proteobacteria. The primer extension assay was further used to determine the transcription start sites for the above three operons and to localize the -10 and -35 elements. Zur binding sites overlapped the -10 sequence of its target promoters, which was consistent with the previous observation that Zur binding would block the entry of the RNA polymerase to repress the transcription of its target genes.</p> <p>Conclusion</p> <p>Zur as a repressor directly controls the transcription of <it>znuA, znuCB </it>and <it>ykgM</it>-<it>RpmJ2 </it>in <it>Y. pestis </it>by employing a conserved mechanism of Zur-promoter DNA association as observed in Îł-Proteobacteria. Zur contributes to zinc homeostasis in <it>Y. pestis </it>likely through transcriptional repression of the high-affinity zinc uptake system ZnuACB and two alternative ribosomal proteins YkgM and RpmJ2.</p

    Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription regulator PhoP has been shown to be important for <it>Y. pestis </it>survival in macrophages and under various <it>in vitro </it>stresses. However, the mechanism by which PhoP promotes bacterial intracellular survival is not fully understood. Our previous microarray analysis suggested that PhoP governed a wide set of cellular pathways in <it>Y. pestis</it>. A series of biochemical experiments were done herein to study members of the PhoP regulon of <it>Y. pestis </it>biovar <it>Microtus</it>.</p> <p>Results</p> <p>By using gel mobility shift assay and quantitative RT-PCR, a total of 30 putative transcription units were characterized as direct PhoP targets. The primer extension assay was further used to determine the transcription start sites of 18 PhoP-dependent promoters and to localize the -10 and -35 elements. The DNase I footprinting was used to identify the PhoP-binding sites within 17 PhoP-dependent promoters, enabling the identification of PhoP box and matrix that both represented the conserved signals for PhoP recognition in <it>Y. pestis</it>. Data presented here providing a good basis for modeling PhoP-promoter DNA interactions that is crucial to the PhoP-mediated transcriptional regulation.</p> <p>Conclusion</p> <p>The proven direct PhoP targets include nine genes encoding regulators and 21 genes or operons with functions of detoxification, protection against DNA damages, resistance to antimicrobial peptides, and adaptation to magnesium limitation. We can presume that PhoP is a global regulator that controls a complex regulatory cascade by a mechanism of not only directly controlling the expression of specific genes, but also indirectly regulating various cellular pathways by acting on a set of dedicated regulators. These results help us gain insights into the PhoP-dependent mechanisms by which <it>Y. pestis </it>survives the antibacterial strategies employed by host macrophages.</p

    Partial cystectomy for bladder squamous cell carcinoma with a 10-year follow-up: a case report

    Get PDF
    Squamous cell carcinoma (SCC) of the bladder is a rare malignancy of the urinary system. It is prone to invasion and metastasis in the early stage and has a poor prognosis. This case reports a 65-year-old female patient with SCC of the bladder who was free of disease recurrence and metastasis 10 years after partial cystectomy (PC) combined with left ureteral reimplantation. The treatment plan and admission of this patient were retrospectively analyzed in order to provide some reference significance for the treatment plan for the SCC of the bladder
    • …
    corecore