51 research outputs found

    Combination of thymosin α1 with conventional therapy improves APC and IL-1R1 levels in children with severe pneumonia

    Get PDF
    Purpose: To investigate the effect of a combination of thymosin α1 with  conventional regimen on APC and IL-1R1 levels in children with severe pneumonia, and to provide a reference for its clinical treatment.Methods: A total of 96 children with severe pneumonia over a period of two years were divided into control and observation groups (48 cases per  group) by random number table method. The patients consisted of 46 males and 50 females within the age range of 0.1 - 6 years (mean age = 3.0 ± 1.2 years), and mean duration of 13.4 ± 2.2 days). Their acute physiology and chronic health evaluation II (APACHE II) was 20.3 ± 3.2 points. Patients in the control group were placed on conventional treatment programs, while those in the observation group, in addition to the  conventional treatments, received thymosin α1 (subcutaneous injection of thymosin α1 at a dose of 1.5 mg per injection) twice daily for the first 3 days, then once daily until the 7th day, after which the adverse reactions were observed and treated. Pulmonary function indices, and levels of APC, and IL-1R1 were also determined in the patients’ sera before and after the treatment regime.Results: The clinical efficacy of the observation group was significantly better (p < 0.05) than that of control. There were no significant differences (p > 0.05) in the indices of pulmonary function (maximal inspiratory and expiratory pressure, and peak expiratory flow) between the two groups before treatment. However, after treatment they were significantly higher (p < 0.05) in the observation group than in control. There were no significant differences (p > 0.05) in APC and IL-1R1 levels between the two groups before treatment, but after treatment, while the level of APC in the observation group was significantly increased (p < 0.05), the IL-1R1 level was significantly decreased (p < 0.05), when compared to the control group. Both groups showed no obvious adverse reactions during the treatmentregime.Conclusion: Combining thymosin α1 with routine treatment in the  management of children with severe pneumonia can significantly alleviate the symptoms of patients, greatly stimulate recovery of pulmonary function, improve APC and IL-1R1 levels, and prevent inflammation.Keywords: Pneumonia, Thymosin α1, Routine treatment, Inflammatory factors, Pulmonary functio

    Taste buds are not derived from neural crest in mouse, chicken, and zebrafish

    Get PDF
    Our lineage tracing studies using multiple Cre mouse lines showed a concurrent labeling of abundant taste bud cells and the underlying connective tissue with a neural crest (NC) origin, warranting a further examination on the issue of whether there is an NC derivation of taste bud cells. In this study, we mapped NC cell lineages in three different models, Sox10-iCreER(T2)/tdT mouse, GFP(+) neural fold transplantation to GFP(−) chickens, and Sox10-Cre/GFP-RFP zebrafish model. We found that in mice, Sox10-iCreER(T2) specifically labels NC cell lineages with a single dose of tamoxifen at E7.5 and that the labeled cells were widely distributed in the connective tissue of the tongue. No labeled cells were found in taste buds or the surrounding epithelium in the postnatal mice. In the GFP(+)/GFP(−) chicken chimera model, GFP(+) cells migrated extensively to the cranial region of chicken embryos ipsilateral to the surgery side but were absent in taste buds in the base of oral cavity and palate. In zebrafish, Sox10-Cre/GFP-RFP faithfully labeled known NC-derived tissues but did not label taste buds in lower jaw or the barbel. Our data, together with previous findings in axolotl, indicate that taste buds are not derived from NC cells in rodents, birds, amphibians or teleost fish

    Self-assembling subnanometer pores with unusual mass-transport properties

    Get PDF
    A long-standing aim in molecular self-assembly is the development of synthetic nanopores capable of mimicking the mass-transport characteristics of biological channels and pores. Here we report a strategy for enforcing the nanotubular assembly of rigid macrocycles in both the solid state and solution based on the interplay of multiple hydrogen-bonding and aromatic π − π stacking interactions. The resultant nanotubes have modifiable surfaces and inner pores of a uniform diameter defined by the constituent macrocycles. The self-assembling hydrophobic nanopores can mediate not only highly selective transmembrane ion transport, unprecedented for a synthetic nanopore, but also highly efficient transmembrane water permeability. These results establish a solid foundation for developing synthetically accessible, robust nanostructured systems with broad applications such as reconstituted mimicry of defined functions solely achieved by biological nanostructures, molecular sensing, and the fabrication of porous materials required for water purification and molecular separations

    Research on High-Precision Form Grinding Technology of Gear Based on Ambient Temperature Adaptability

    No full text
    The thermal error of high-precision computer numerical control (CNC) form grinding machine has become the critical factor affecting its locating precision. Because the thermal error is more complicated to be measured directly, most of the measurement tests are usually aimed at no-load conditions. In this article, a method to evaluate the machine tool thermal error based on the principle of tooth profile error through the gear grinding precision is presented. Based on high-precision CNC form grinding machine need to maintain isoperibol, this paper proposed the ambient temperature as a variable, for different ambient temperature to measure the thermal error of the machine tool. According to the measurement results of the thermal error, the method of partial least squares neural network is used to structure the thermal error prediction model of the machine tool. The experimental data show that the grade of the gear precision can reach four levels at different temperatures. This approach shows a promising prospect in the application of high-precision CNC gear form grinding machine in the future

    Analysis of Contact Part of Error Tooth Surface and Dynamic Performance Prediction for Involute Gear

    No full text
    Aiming at the problem of constructing digital model of involute gear with error, the method of linear interpolation combined with area weight interpolation is proposed. Based on the non-feature discrete data block technique, the true tooth surface discrete data obtained by the coordinate measuring instrument is divided into blocks, and then the interpolation method is used to interpolate the nonmeasurement area to construct the real tooth surface with errors. The contact part and dynamic performance of the gear are predicted by using the constructed error tooth surface. The contact error of the tooth surface and the transmission error of the gear are verified by the test, and the reliability of the judgment result is judged by measuring the vibration in the direction of the gear meshing line. Compared with the example, this method not only reduces the computational complexity of the interpolation algorithm, but also improves the accuracy of the tooth interpolation data points and the smoothness of the error tooth surface

    Influences of formation water invasion on the wellbore temperature and pressure in supercritical CO2 drilling

    No full text
    Aiming to study the influence of formation water invasion on the wellbore temperature and pressure in SC-CO2 (supercritical CO2) drilling with coiled tubing, this paper builds up a wellbore flow model with formation water invasion in SC-CO2 drilling with coiled tubing, based on the comprehensive investigation of the influence of viscosity, density, thermal conductivity, isobaric heat capacity and Joule-Thompson coefficient of SC-CO2. The wellbore temperature and pressure distribution were calculated by the method of coupling among these parameters. The results show that the bigger the rate of invaded formation water and the bigger the density of mixed fluid, the bigger the convective heat transfer coefficient in the annulus. Because of the Joule-Thompson cooling effect caused by nozzle throttling, the annulus Mixed fluid density increased abruptly and the convective heat transfer coefficient decreased abruptly at the well depth of about 1 900 m (about 100 m to bottom hole). Meanwhile the wellbore fluid temperature increased with the invasion rate of formation water, and the same Joule-Thompson cooling effect caused the wellbore fluid temperature to decrease abruptly at the well depth of about 1 900 m. Moreover, the wellbore annulus pressure increased with the increasing of invaded formation water quantity. But the amplitude is not obvious. Key words: coiled tubing, supercritical CO2 drilling, formation water invasion, wellbore temperature, wellbore pressur

    Numerical simulation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section

    No full text
    The density of supercritical carbon dioxide is relatively heavy, close to liquid density; its viscosity is small and close to gas viscosity. In order to research the cutting-carrying ability of supercritical carbon dioxide drilling in horizontal section, a mathematical model was built describing cutting-carrying process in the horizontal eccentric annulus with supercritical carbon dioxide; at the same time, the physical model was built according to the characteristics of horizontal eccentric annulus. The cutting-carrying law in horizontal section at different viscosities and densities of supercritical carbon dioxide was simulated with CFD simulation software. The cutting-carrying ability of supercritical carbon dioxide increases with increasing density and viscosity, but there exists a critical density, when the density of supercritical carbon dioxide is smaller than that, the cutting-carrying ability will decrease apparently, and the smaller the density of supercritical carbon dioxide is, the worse the cutting-carrying ability will be. We can control the back pressure of wellhead to change the density of supercritical carbon dioxide in the wellbore while drilling and to comply with the cutting-carrying request, but the ground pump pressure should be appropriate to avoid higher load. Key words: supercritical carbon dioxide, density, carrying cuttings, numerical simulation, horizontal sectio
    • …
    corecore