447 research outputs found

    Functionalization, growth and applications of single wall carbon nanotubes

    Get PDF
    Because of their remarkable structural, mechanical and electrical properties, carbon nanotubes, and especially single wall carbon nanotubes (SWNTs), represent one of the most widely investigated materials today in the emerging field of nanotechnology. The development of oriented growth of SWNTs critical for applications, novel approaches for the creation of functional SWNTs, and applications of both as-prepared and chemically functionalized SWNTs for electrochemically-induced hydrogen storage, in-situ formation of new polymer and ceramic nanocomposites with SWNTs, and the fabrication and study for the first time, to the best of our knowledge, of a SWNT-based biofuel cell and self-powered biosensor, are the thrusts of the research discussed in this thesis. Introduction to the science and the potential applications of carbon nanotubes are presented in Chapters 1 to 2 of the thesis, and an overview of the methods used in this work is discussed in Chapter 3. Chapters 4 to 6 discuss the results of the work performed. Spin-coating deposition of a polymer-chelated catalyst precursor on conductive silicon wafers developed for the oriented growth of SWNTs, is discussed in Chapter 4. Oriented growth of SWNTs was obtained using chemical vapor deposition with alcohol as the carbon source. For application in biofuel cells and biosensors (discussed in the final segment), the oriented SWNTs on silicon were functionalized with selected redox enzymes to form the fuel cell and sensor electrodes. In initial tests, a substantial open circuit cell voltage of 200 mV, and analyte-sensitive direct electron transfer, were observed from the fabricated biofuel cell and biosensor devices, respectively. Environmentally friendly, rapid and efficient microwave-induced chemical functionalization of SWNTs was achieved for the first time in the course of this work and is described in Chapter 5 of the thesis. The microwave radiation assisted technique has brought down the functionalization time from days using typical chemical methods, such as refluxing, to the order of minutes. Chemical functionalizations by the microwave method achieved include amidation, 1 ,3-dipolar cycloaddition and nitration, with the latter providing SWNTs that are very soluble in water and alcohol. Both microwave-induced and supercritical carbon dioxide approaches were also used to prepare and study the formation of ceramic (silicon carbide, SiC) and polymer (polymethyl methacrylate, PMMA) nanocomposites with SWNTs, respectively. Electrochemically-induced functionalization of SWNTs by nitro groups and enzymes has been studied in some detail, whereas electrochemical hydrogen storage for fuel cell operation using pristine and functionalized SWNTs as the storage medium has also been studied in this work and discussed in Chapter 6 of this thesis. Strong evidence for electrochemically-induced hydrogen uptake approaching 3 wt % based on thermogravimetric measurements has been obtained on SWNT nanopaper membranes on which the nitrogen-containing conducting polymer, polyaniline, was deposited. A summary of the work performed and suggestions for future work are provided in Chapter 7. The schematic molecular structures of the more complex molecules, polymers and enzymes used in this work (except those shown in the tables) are shown schematically in Appendix A

    Risk perception affacting the performance of shipping company

    Get PDF

    An empirical study of realvideo performance across the internet

    Get PDF

    Sequential emitter identification method based on D-S evidence theory

    Get PDF
    This paper proposes a novel sequential identification method for enhancing the anti-jamming performance and for accurate recognition rate of the emitters’ individual identification in the complicated environment. The proposed method integrates the D-S evidence theory and features extraction that can get the utmost out of features of information systems and decrease the influence of uncertain factors in the signal processing. Firstly, selected features are extracted from intercepted signals. Then, the proposed self-adaptive fusing rule based on the decision vector is utilized to fuse the evidences that are transformed by features and the previous fusing information. Finally, recognition results can be obtained by judgment rules. The simulation analysis demonstrates that self-adaptive fusing rule can achieve a great balance between computational efficiency and accurate identifying rate. While comparing with other identifying methods, the proposed sequential identifying method can provide more accurate and stable recognition results, which makes the utmost care and use of existing information

    Form factors of Ω−\Omega^- in a covariant quark-diquark approach

    Full text link
    The electromagnetic and gravitational form factors of Ω−\Omega^-, a spin-3/2 hyperon composed of three ss quarks, are calculated by using a covariant quark-diquark approach. The model parameters are determined by fitting to the form factors of the lattice QCD calculations. Our obtained electromagnetic radii, magnetic moment, and electric-quadrupole moment are in agreement with the experimental measurements and some other model calculations. Furthermore, the mass and spin distributions of Ω−\Omega^- from the gravitational form factors are also displayed. It is found that the mass radius is smaller than its electromagnetic ones. Finally, the interpretations of the energy density and momentum current distribution are also discussed

    Form factors of decuplet baryons in a covariant quark-diquark approach

    Full text link
    The electromagnetic and gravitational form factors of decuplet baryons are systematically studied with a covariant quark-diquark approach. The model parameters are firstly discussed and determined through comparison with the lattice calculation results integrally. Then, the electromagnetic properties of the systems including electromagnetic radii, magnetic moments, and electric-quadrupole moments are calculated. The obtained results are in agreement with experimental measurements and the results of other models. Finally, the gravitational form factors and the mechanical properties of the decuplet baryons, such as mass radii, energy densities, and spin distributions, are also calculated and discussed.Comment: 19 pages, 27 figure
    • 

    corecore