23,495 research outputs found

    An Improved Traffic Matrix Decomposition Method with Frequency-Domain Regularization

    Full text link
    We propose a novel network traffic matrix decomposition method named Stable Principal Component Pursuit with Frequency-Domain Regularization (SPCP-FDR), which improves the Stable Principal Component Pursuit (SPCP) method by using a frequency-domain noise regularization function. An experiment demonstrates the feasibility of this new decomposition method.Comment: Accepted to IEICE Transactions on Information and System

    Structural Analysis of Network Traffic Matrix via Relaxed Principal Component Pursuit

    Full text link
    The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly for analyzing traffic matrix that is polluted by large volume anomalies, and then propose a new decomposition model for the network traffic matrix. According to this model, we carry out the structural analysis by decomposing the network traffic matrix into three sub-matrices, namely, the deterministic traffic, the anomaly traffic and the noise traffic matrix, which is similar to the Robust Principal Component Analysis (RPCA) problem previously studied in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, we present an iterative approach for decomposing a traffic matrix, and demonstrate its efficiency and flexibility by experimental results. Finally, we further discuss several features of the deterministic and noise traffic. Our study develops a novel method for the problem of structural analysis of the traffic matrix, which is robust against pollution of large volume anomalies.Comment: Accepted to Elsevier Computer Network

    Elevated-temperature impact toughness of Mg–(Gd, Y)–Zr alloy

    Get PDF
    The Charpy impact results for Mg–10Gd–3Y–0.5Zr and Mg–11Y–5Gd–2Zn–0.5Zr alloys at various temperatures showed that Mg–10Gd–3Y–0.5Zr was more sensitive to temperature. The increase in impact toughness with temperature was related to the blunt crack-tip at high temperatures. The delamination and local melt of matrix were responsible for the brittle-to-ductile transition of GW103 alloy. The branch and bridging of cracks resulting from ordered phases played an import role in the change in fracture mode from cleavage fracture to quasi-cleavage and dimple-fracture for WGZ1152 alloy
    corecore