72 research outputs found

    Measurement-Based Characterization of 39 GHz Millimeter-Wave Dual-Polarized Channel Under Foliage Loss Impact

    Get PDF
    This paper presents a measurement-based analysis of wideband 39 GHz millimeter wave (mm-wave) dual-polarized propagation channel under the impact of foliage presence between a transmitter (Tx) and a receiver (Rx). The measurements were conducted in a rich-vegetation area, and the so-called direction-scan-sounding (DSS) method which rotates a horn antenna in angular domains was applied, aiming at investigating the direction-of-arrival (DoA)-dependent characteristics of polarimetric channels. Four Tx-to-Rx polarization configurations were considered, including co-polarization scenarios with vertical Tx-polarization to vertical Rx-polarization (VV) and horizontal to horizontal (HH), as well as cross-polarization with vertical to horizontal (VH) and horizontal to vertical (HV), which allow scrutinizing the differences in delay-direction dispersion for usually-encountered scenarios. A foliage loss model for various vegetation depths in VV polarization configuration, was also presented in this paper. The results show that the foliage-loss DoA spectra for VH and HV are similar, while the spectra exhibit less penetration loss in most directions for VV than for the HH. Furthermore, the presence of vegetation between the Tx and the Rx leads to larger dispersion in delay compared to the clear line-of-sight (LoS) scenario, particularly for vertical polarization in the Tx side, and additionally, the foliage presence also results in evident DoA dispersion, specially in the HV scenario. Selectivity in directions caused by foliage is more significant in vertically-polarized Tx scenarios than in the horizontally-polarized Tx scenarios. A statistical model is established summarizing these comparison details

    Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge

    Get PDF
    The ultramafic-hosted Kairei vent field is located at 25°19′ S, 70°02′ E, towards the Northern end of segment 1 of the Central Indian Ridge (CIR-S1) at a water depth of ~2450 m. This study aims to investigate the distribution of trace elements among sulfide minerals of differing textures and to examine the possible factors controlling the trace element distribution in those minerals using LA-ICP-MS spot and line scan analyses. Our results show that there are distinct systematic differences in trace element distributions throughout the different minerals, as follows: (1) pyrite is divided into three types at Kairei, including early-stage euhedral pyrite (py-I), sub-euhedral pyrite (py-II), and colloform pyrite (py-III). Pyrite is generally enriched with Mo, Au, As, Tl, Mn, and U. Pyrite-I has high contents of Se, Te, Bi, and Ni when compared to the other types; py-II is enriched in Au relative to py-I and py-III, but poor in Ni; py-III is enriched in Mo, Pb, and U but is poor in Se, Te, Bi, and Au relative to py-I and py-II. Variations in the concentrations of Se, Te, and Bi in pyrite are most likely governed by the strong temperature gradient. There is generally a lower concentration of nickel than Co in pyrite, indicating that our samples precipitated at high temperatures, whereas the extreme Co enrichment is likely from a magmatic heat source combined with an influence of serpentinization reactions. (2) Chalcopyrite is characterized by high concentrations of Co, Se, and Te. The abundance of Se and Te in chalcopyrite over the other minerals is interpreted to have been caused by the high solubilities of Se and Te in the chalcopyrite lattice at high temperatures. The concentrations of Sb, As, and Au are relatively low in chalcopyrite from the Kairei vent field. (3) Sphalerite from Zn-rich chimneys is characterized by high concentrations of Sn, Co, Ga, Ge, Ag, Pb, Sb, As, and Cd, but is depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison with the other minerals. The high concentrations of Cd and Co are likely caused by the substitution of Cd2+ and Co2+ for Zn2+ in sphalerite. A high concentration of Pb accompanied by a high Ag concentration in sphalerite indicates that Ag occurs as Pb–Ag sulfosalts. Gold is generally low in sphalerite and strongly correlates with Pb, suggesting its presence in microinclusions of galena. The strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate at medium temperatures and under moderately reduced conditions. (4) Bornite–digenite has very low concentrations of most trace elements, except for Co, Se, and Bi. Serpentinization in ultramafic-hosted hydrothermal systems might play an important role in Au enrichment in pyrite with low As contents. Compared to felsic-hosted seafloor massive sulfide deposits, sulfide minerals from ultramafic-hosted deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations, the latter often attributed to the contribution of magmatic volatiles. As with typical ultramafic-hosted seafloor massive sulfide deposits, Se enrichment in chalcopyrite from Kairei indicates that the primary factor that controls the Se enrichment is temperature-controlled mobility in vent fluids

    Antibody Dynamics of 2009 Influenza A (H1N1) Virus in Infected Patients and Vaccinated People in China

    Get PDF
    BACKGROUND: To evaluate the risk of the recurrence and the efficiency of the vaccination, we followed-up antibody responses in patients with the 2009 pandemic H1N1 influenza and persons who received the pandemic H1N1 vaccine in Guangzhou China. METHODS: We collected serum samples from 129 patients and 86 vaccinated persons at day 0, 15, 30, 180 after the disease onset or the vaccination, respectively. Antibody titers in these serum samples were determined by haemagglutination inhibition (HI) assay using a local isolated virus strain A/Guangdong Liwan/SWL1538/2009(H1N1). RESULTS: HI antibody positive rate of the patients increased significantly from 0% to 60% at day 15 (χ(2) = 78, P<0.001) and 100% at day 30 (χ(2) = 23, P<0.001), but decreased significantly to 52% at day 180 (χ(2) = 38, P<0.001), while that of vaccinated subjects increased from 0% to 78% at day 15 (χ(2) = 110, P<0.001) and 81% at day 30 (χ(2) = 0.32, P = 0.57), but decreased significantly to 34% at day 180 (χ(2) = 39, P<0.001). Geometric mean titers (GMT) of HI antibodies in positive samples from the patients did not change significantly between day 15 and day 30 (T = 0.92, P = 0.36), but it decreased significantly from 80 at day 30 to 52 at day 180 (T = 4.5, P<0.001). GMT of vaccinated persons increased significantly from 100 at day 15 to 193 at day 30 (T = 4.5, P<0.001), but deceased significantly to 74 at day 180 (T = 5.1, P<0.001). Compared to the patients, the vaccinated subjects showed lower seroconversion rate (χ(2) = 11, P<0.001; χ(2) = 5.9, P = 0.015), but higher GMT (T = 6.0, P<0.001; T = 3.6, P = 0.001) at day 30 and day 180, respectively. CONCLUSION: Vaccination of 2009 influenza A (H1N1) was effective. However, about half or more recovered patients and vaccinated persons might have lost sufficient immunity against the recurrence of the viral infection after half a year. Vaccination or re-vaccination may be necessary for prevention of the recurrence

    Numerical Simulation of Nonequilibrium Plasma-Assisted Ignition for Gasoline Engine

    No full text

    Underwater Image Enhancement Based on Local Contrast Correction and Multi-Scale Fusion

    No full text
    In this study, an underwater image enhancement method based on local contrast correction (LCC) and multi-scale fusion is proposed to resolve low contrast and color distortion of underwater images. First, the original image is compensated using the red channel, and the compensated image is processed with a white balance. Second, LCC and image sharpening are carried out to generate two different image versions. Finally, the local contrast corrected images are fused with sharpened images by the multi-scale fusion method. The results show that the proposed method can be applied to water degradation images in different environments without resorting to an image formation model. It can effectively solve color distortion, low contrast, and unobvious details of underwater images

    Performance Analysis on ISAR Imaging of Space Targets

    No full text
    Usually, in traditional Inverse Synthetic Aperture Radar (ISAR) systems design and mode selection for space satellite targets, coherent integration gain in azimuth direction hardly can be analyzed, which depends on target’s motion. In this study, we combine the target orbit parameters to determine its motion relative to radar and deduce coherent integration equation in ISAR imaging to realize the selection of imaging intervals based on coherent integration, which can ensure the resolution in azimuth direction. Meanwhile, we analyze the influence of target orbit altitude to echo power and imaging Signal-to-Noise Ratio (SNR) that provides a new indicator for space observation ISAR systems design. The result of simulation experiment illustrates that with target orbit altitude increasing, coherent integration gain in azimuth direction of large-angular observation offsets the decreasing of imaging SNR in a degree, which provides a brand-new perspective for space observation ISAR systems and signal processing design

    A Graph-Convolutional Neural Network for Addressing Small-Scale Reaction Prediction

    No full text
    We describe a graph-convolutional neural network (GCN) model whose reaction prediction capable as potent as the transformer model on sufficient data, and adopt the Baeyer-Villiger oxidation to explore their performance differences on limited data. The top-1 accuracy of GCN model (90.4%) is higher than that of transformer model (58.4%)

    Study on the fracture behavior of the planar-type solid oxide fuel cells

    No full text
    Study on the fracture behavior of the planar-type solid oxide fuel cell

    Reproducing the invention of a named reaction: zero-shot prediction of unseen chemical reactions

    No full text
    While state-of-art models can predict reactions through the transfer learning of thousands of samples with the same reaction types as those of the reactions to predict, how to prepare such models to predict "unseen" reactions remain an unanswered question. We aim to study the Transformer model\u27s ability to predict "unseen" reactions following "zero-shot reaction prediction (ZSRP)", a concept derived from zero-shot learning and zero-shot translation. We reproduce the human invention of the Chan-Lam coupling reaction where the inventor was inspired by the Suzuki reaction when improving Barton\u27s bismuth arylation reaction. After being fine-tuned with the samples from these two "existing" reactions, the USPTO-trained Transformer can predict "unseen" Chan-Lam coupling reactions with 55.7% top-1 accuracy. Our model also mimics the later stage of the history of this reaction, where the initial case of this reaction was generalized to more reactants and reagents via the "one-shot/few-shot reaction prediction(OSRP/FSRP)" approaches
    • …
    corecore