4 research outputs found
In Situ Sputtering Silver Induction Electrode for Stable and Stretchable Triboelectric Nanogenerators
Triboelectric nanogenerators (TENG) can convert mechanical energy into electricity and exhibit unique advantages in the field of low-frequency and discrete energy harvesting. However, the interfacial state and stability between the triboelectric layer and electrode layer influence the output and applications of TENG. Herein, an in situ sputtering Ag process for fabricating induction electrodes is proposed to match with TENG. The sputtering Ag process is optimized by a variety of parameters, such as sputtering power, single-cycle time, number of cycles, cycle interval, and vacuum degree. In addition, the chemical state of Ag as a function of air placement is investigated, showing the sputtered Ag has excellent conductivity and stability. Moreover, four kinds of polymers are selected for fabricating TENGs based on the sputtered Ag induction electrodes, i.e., nylon 66, polyimide (PI), fluorinated ethylene propylene (FEP), and polydimethylsiloxane (PDMS), which shows great applicability. Considering the demand of flexible power suppliers, the sputtered Ag is integrated with a PDMS substrate, and shows good adhesion, flexibility, and ductility after severe deformation of the PDMS. Finally, the developed induction electrode processing technology is used in flexible TENG and shows great prospects in self-powered electronics for practical applications
From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines
During the last decades, the use of nanotechnology in medicine has effectively been translated to the design of drug delivery systems, nanostructured tissues, diagnostic platforms, and novel nanomaterials against several human diseases and infectious pathogens. Nanotechnology-enabled vaccines have been positioned as solutions to mitigate the pandemic outbreak caused by the novel pathogen severe acute respiratory syndrome coronavirus 2. To fast-track the development of vaccines, unprecedented industrial and academic collaborations emerged around the world, resulting in the clinical translation of effective vaccines in less than one year. In this article, we provide an overview of the path to translation from the bench to the clinic of nanotechnology-enabled messenger ribonucleic acid vaccines and examine in detail the types of delivery systems used, their mechanisms of action, obtained results during each phase of their clinical development and their regulatory approval process. We also analyze how nanotechnology is impacting global health and economy during the COVID-19 pandemic and beyond
Engineering a highly elastic human protein-based sealant for surgical applications.
Surgical sealants have been used for sealing or reconnecting ruptured tissues but often have low adhesion, inappropriate mechanical strength, cytotoxicity concerns, and poor performance in biological environments. To address these challenges, we engineered a biocompatible and highly elastic hydrogel sealant with tunable adhesion properties by photocrosslinking the recombinant human protein tropoelastin. The subcutaneous implantation of the methacryloyl-substituted tropoelastin (MeTro) sealant in rodents demonstrated low toxicity and controlled degradation. All animals survived surgical procedures with adequate blood circulation by using MeTro in an incisional model of artery sealing in rats, and animals showed normal breathing and lung function in a model of surgically induced rat lung leakage. In vivo experiments in a porcine model demonstrated complete sealing of severely leaking lung tissue in the absence of sutures or staples, with no clinical or sonographic signs of pneumothorax during 14 days of follow-up. The engineered MeTro sealant has high potential for clinical applications because of superior adhesion and mechanical properties compared to commercially available sealants, as well as opportunity for further optimization of the degradation rate to fit desired surgical applications on different tissues