62 research outputs found

    Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years.

    Get PDF
    Soil organic carbon (SOC) is a major component in the global carbon cycle. Yet how input of plant litter may influence the loss of SOC through a phenomenon called priming effect remains highly uncertain. Most published results about the priming effect came from short-term investigations for a few weeks or at the most for a few months in duration. The priming effect has not been studied at the annual time scale. In this study for 815 days, we investigated the priming effect of added maize leaves on SOC decomposition of two soil types and two treatments (bare fallow for 23 years, and adjacent old-field, represent stable and relatively labile SOC, respectively) of SOC stabilities within each soil type, using a natural 13C-isotope method. Results showed that the variation of the priming effect through time had three distinctive phases for all soils: (1) a strong negative priming phase during the first period (≈0-90 days); (2) a pulse of positive priming phase in the middle (≈70-160 and 140-350 days for soils from Hailun and Shenyang stations, respectively); and (3) a relatively stabilized phase of priming during the last stage of the incubation (>160 days and >350 days for soils from Hailun and Shenyang stations, respectively). Because of major differences in soil properties, the two soil types produced different cumulative priming effects at the end of the experiment, a positive priming effect of 3-7% for the Mollisol and a negative priming effect of 4-8% for the Alfisol. Although soil types and measurement times modulated most of the variability of the priming effect, relative SOC stabilities also influenced the priming effect for a particular soil type and at a particular dynamic phase. The stable SOC from the bare fallow treatment tended to produce a narrower variability during the first phase of negative priming and also during the second phase of positive priming. Averaged over the entire experiment, the stable SOC (i.e., the bare fallow) was at least as responsive to priming as the relatively labile SOC (i.e., the old-field) if not more responsive. The annual time scale of our experiment allowed us to demonstrate the three distinctive phases of the priming effect. Our results highlight the importance of studying the priming effect by investigating the temporal dynamics over longer time scales

    Inhibition of ERK activation enhances the repair of double-stranded breaks via non-homologous end joining by increasing DNA-PKcs activation

    Get PDF
    AbstractNon-homologous end joining (NHEJ) is one of the major pathways that repairs double-stranded DNA breaks (DSBs). Activation of DNA-PK is required for NHEJ. However, the mechanism leading to DNA-PKcs activation remains incompletely understood. We provide evidence here that the MEK–ERK pathway plays a role in DNA-PKcs-mediated NHEJ. In comparison to the vehicle control (DMSO), etoposide (ETOP)-induced DSBs in MCF7 cells were more rapidly repaired in the presence of U0126, a specific MEK inhibitor, based on the reduction of γH2AX and tail moments. Additionally, U0126 increased reactivation of luciferase activity, which resulted from the repair of restriction enzyme-cleaved DSBs. Furthermore, while inhibition of ERK activation using the dominant-negative MEK1K97M accelerated the repair of DSBs, enforcing ERK activation with the constitutively active MEK1Q56P reduced DSB repair. In line with MEK activating ERK1 and ERK2 kinases, knockdown of either ERK1 or ERK2 increased DSB repair. Consistent with the activation of DNA-PKcs being required for NHEJ, we demonstrated that inhibition of ERK activation using U0126, MEK1K97M, and knockdown of ERK1 or ERK2 enhanced ETOP-induced activation of DNA-PKcs. Conversely, enforcing ERK activation by MEK1Q56P reduced ETOP-initiated DNA-PKcs activation. Taken together, we demonstrate that ERK reduces NHEJ-mediated repair of DSBs via attenuation of DNA-PKcs activation

    Utility of S100A12 as an Early Biomarker in Patients With ST-Segment Elevation Myocardial Infarction

    Get PDF
    Importance: S100A12 is a calcium binding protein which is involved in inflammation and progression of atherosclerosis. Objective: We sought to investigate the utility of S100A12 as a biomarker for the early diagnosis and prognostication of patients presenting with ST-segment elevation myocardial infarction (STEMI). Design, Setting, and Participants: S100A12 was measured in 1023 patients presenting to the emergency department with acute chest pain between June 2012 and November 2015. An independent cohort of 398 patients enrolled at 3 different hospitals served as a validation cohort. Main Outcomes and Measures: The primary clinical endpoint of interest was major adverse cardiac and cerebral events (MACCE) defined as a composite of all-cause death, MI, stroke, or hospitalization for heart failure. Results: A total of 438/1023 patients (42.8%) in the diagnosis cohort were adjudicated as STEMI, among whom plasma S100A12 levels increased within 30 min and peaked 1–2 h after symptom onset. Compared with high-sensitivity cardiac troponin T and creatine kinase-MB isoenzyme, S100A12 more accurately identified STEMI, especially within the first 2 h after symptom onset (area under the curve 0.963 compared with 0.860 for hscTnT and 0.711 for CK-MB, both P \u3c 0.05). These results were consistent in the 243-patient validation cohort. The 1-year rate of MACCE was greatest in patients in the highest peak S100A12 tertile, intermediate in the middle tertile and least in the lowest tertile (9.3 vs. 5.7 vs. 3.0% respectively, Ptrend = 0.0006). By multivariable analysis the peak plasma concentration of S100A12 was an independent predictor of MACCE within 1 year after STEMI (HR, 1.001, 95%CI, 1.000–1.002; P = 0.0104). Zhang et al. S100A12 as a STEMI Biomarker Conclusions and Relevance: S100A12 rapidly identified patients with STEMI, more accurately than other cardiac biomarkers, especially within the first 2 h after symptom onset. The peak plasma S100A12 level was a strong predictor of 1-year prognosis after STEMI

    Two ultraviolet radiation datasets that cover China

    Get PDF
    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes

    Stresses and deformations of an eccentric cylindrical cam during hydro-joining

    No full text
    The stresses and deformations of an eccentric cylindrical cam during the process of hydro-joining have been calculated in orthogonal curvilinear coordinates according to the mechanical model of the cam and governing equations in terms of appropriate complex potentials with suitable boundary conditions. The radial and shearing stress coefficients determined for an example cam are far less than that of the tangential stress during hydro-joining. The tangential stress coefficient of the outer surface of the cam is greater than that of the internal surface when the polar angle exceeds a particular value. The position of the maximum value of the radial stress coefficient is located on the internal surface of the cam, and the maximum shear stress coefficient is located between the inside and outside surfaces of the cam. The cam deformations on the internal and external surfaces under internal pressure respectively attain maximum values at particular angles. The maximum values of the radial and y-directional deformations are located at the position of the minimum wall thickness. The radial deformations determined for an example cam are far larger that the tangential deformations during hydro-joining. The errors between the theoretical and numerical solutions for the tangential stress and the y-directional deformation are both very small

    One-step solid-state thermolysis of a metal–organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes

    No full text
    We report a simple and facile solid-state approach to large-scale synthesis of multiwalled carbon nanotubes (MCNTs), for the first time, by one-step direct thermolysis of a metal–organic framework [Ni3(btc)2·12H2O] (btc = benzene-1,3,5-tricarboxylato) in a one-end closed conventional horizontal tube furnace under relatively low temperature without using any additional carrier gas or catalyst
    • …
    corecore