39,001 research outputs found

    The thermal evolution of nuclear matter at zero temperature and definite baryon number density in chiral perturbation theory

    Full text link
    The thermal properties of cold dense nuclear matter are investigated with chiral perturbation theory. The evolution curves for the baryon number density, baryon number susceptibility, pressure and the equation of state are obtained. The chiral condensate is calculated and our result shows that when the baryon chemical potential goes beyond 1150MeV1150 \mathrm{MeV}, the absolute value of the quark condensate decreases rapidly, which indicates a tendency of chiral restoration.Comment: 17 pages, 9 figures, revtex

    Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF4_4) and tetrafluorosilane (SiF4_4)

    Get PDF
    Accurate quartic anharmonic force fields for CF4_4 and SiF4_4 have been calculated using the CCSD(T) method and basis sets of spdfspdf quality. Based on the {\it ab initio} force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory(CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadratic force field of CF4_4 is further refined to the experimental data. The symmetrization of the Cartesian basis for any combination bands of TdT_d group molecules is discussed using the circular promotion operator for the doubly degenerate modes, together with tabulated vector coupling coefficients. The extraction of the spectroscopic constants from our second order transformed Hamiltonian in curvilinear coordinates is discussed, and compared to a similar procedure in rectilinear coordinates.Comment: (submitted to J. Chem. Phys.

    A classification of 2D fermionic and bosonic topological orders

    Get PDF
    The string-net approach by Levin and Wen, and the local unitary transformation approach by Chen, Gu, and Wen, provide ways to classify topological orders with gappable edge in 2D bosonic systems. The two approaches reveal that the mathematical framework for 2+1D bosonic topological order with gappable edge is closely related to unitary fusion category theory. In this paper, we generalize these systematic descriptions of topological orders to 2D fermion systems. We find a classification of 2+1D fermionic topological orders with gappable edge in terms of the following set of data (Nkij,Fkij,Fjkn,χδijm,αβ,di)(N^{ij}_k, F^{ij}_k, F^{ijm,\alpha\beta}_{jkn,\chi\delta},d_i), that satisfy a set of non-linear algebraic equations. The exactly soluble Hamiltonians can be constructed from the above data on any lattices to realize the corresponding topological orders. When Fkij=0F^{ij}_k=0, our result recovers the previous classification of 2+1D bosonic topological orders with gappable edge.Comment: 19 page 5 figures, RevTeX

    Multi-Context Attention for Human Pose Estimation

    Full text link
    In this paper, we propose to incorporate convolutional neural networks with a multi-context attention mechanism into an end-to-end framework for human pose estimation. We adopt stacked hourglass networks to generate attention maps from features at multiple resolutions with various semantics. The Conditional Random Field (CRF) is utilized to model the correlations among neighboring regions in the attention map. We further combine the holistic attention model, which focuses on the global consistency of the full human body, and the body part attention model, which focuses on the detailed description for different body parts. Hence our model has the ability to focus on different granularity from local salient regions to global semantic-consistent spaces. Additionally, we design novel Hourglass Residual Units (HRUs) to increase the receptive field of the network. These units are extensions of residual units with a side branch incorporating filters with larger receptive fields, hence features with various scales are learned and combined within the HRUs. The effectiveness of the proposed multi-context attention mechanism and the hourglass residual units is evaluated on two widely used human pose estimation benchmarks. Our approach outperforms all existing methods on both benchmarks over all the body parts.Comment: The first two authors contribute equally to this wor

    The Discrete AKNS-D Hierarchy

    Full text link
    In this paper, we consider the discrete AKNS-D hierarchy, find the construction of the hierarchy, prove the bilinear identity and give the construction of the Ï„\tau-functions of this hierarchy.Comment: 11 page
    • …
    corecore