85 research outputs found

    Multiplexing spectral line shape of waveguide transmission by photonic spin-orbit interaction

    Full text link
    Manipulating the spectral line shape exhibits great potential in realizing active optical circuits with switching, sensing, and modulation capabilities. Exploring unusual line shapes, such as Fano resonance and electromagnetically induced transparency (EIT), has attracted substantial interest. Conventional methods of engineering the spectral line shape have limited tunability and face challenges in multiplexing different spectral line shapes. Here, we propose and numerically demonstrate a new mechanism to tailor the transmission line shape almost at will by exploiting the interference of frequency-dependent chiral dipolar states in two helix particles sitting above a dielectric waveguide. We show that, by tuning the polarization of the chiral dipoles and exploiting transverse spin-orbit interaction, one can control the asymmetric Pancharatnam-Berry geometric phase for the excited guided waves propagating in opposite directions. The interference of the guided waves respectively excited by the two particles can give rise to transmissions with various line shapes, including Lorentzian-like, antiresonance-like, Fano-like, and EIT-like line shapes, which carry an intriguing property of line shape-momentum locking, i.e., the transmissions in opposite directions have different line shapes. Our findings open new possibilities for multiplexed and multifunctional nanophotonic designs with unprecedented capability of spectral-line shaping. The proposed structures can be conveniently integrated with optical circuits for on-chip applications.Comment: 9 pages, 5 figure

    Load emphasizes muscle effort minimization during selection of arm movement direction

    Get PDF
    Abstract Background Directional preferences during center-out horizontal shoulder-elbow movements were previously established for both the dominant and non-dominant arm with the use of a free-stroke drawing task that required random selection of movement directions. While the preferred directions were mirror-symmetrical in both arms, they were attributed to a tendency specific for the dominant arm to simplify control of interaction torque by actively accelerating one joint and producing largely passive motion at the other joint. No conclusive evidence has been obtained in support of muscle effort minimization as a contributing factor to the directional preferences. Here, we tested whether distal load changes directional preferences, making the influence of muscle effort minimization on the selection of movement direction more apparent. Methods The free-stroke drawing task was performed by the dominant and non-dominant arm with no load and with 0.454 kg load at the wrist. Motion of each arm was limited to rotation of the shoulder and elbow in the horizontal plane. Directional histograms of strokes produced by the fingertip were calculated to assess directional preferences in each arm and load condition. Possible causes for directional preferences were further investigated by studying optimization across directions of a number of cost functions. Results Preferences in both arms to move in the diagonal directions were revealed. The previously suggested tendency to actively accelerate one joint and produce passive motion at the other joint was supported in both arms and load conditions. However, the load increased the tendency to produce strokes in the transverse diagonal directions (perpendicular to the forearm orientation) in both arms. Increases in required muscle effort caused by the load suggested that the higher frequency of movements in the transverse directions represented increased influence of muscle effort minimization on the selection of movement direction. This interpretation was supported by cost function optimization results. Conclusions While without load, the contribution of muscle effort minimization was minor, and therefore, not apparent, the load revealed this contribution by enhancing it. Unlike control of interaction torque, the revealed tendency to minimize muscle effort was independent of arm dominance.</p

    ConvFormer: Revisiting Transformer for Sequential User Modeling

    Full text link
    Sequential user modeling, a critical task in personalized recommender systems, focuses on predicting the next item a user would prefer, requiring a deep understanding of user behavior sequences. Despite the remarkable success of Transformer-based models across various domains, their full potential in comprehending user behavior remains untapped. In this paper, we re-examine Transformer-like architectures aiming to advance state-of-the-art performance. We start by revisiting the core building blocks of Transformer-based methods, analyzing the effectiveness of the item-to-item mechanism within the context of sequential user modeling. After conducting a thorough experimental analysis, we identify three essential criteria for devising efficient sequential user models, which we hope will serve as practical guidelines to inspire and shape future designs. Following this, we introduce ConvFormer, a simple but powerful modification to the Transformer architecture that meets these criteria, yielding state-of-the-art results. Additionally, we present an acceleration technique to minimize the complexity associated with processing extremely long sequences. Experiments on four public datasets showcase ConvFormer's superiority and confirm the validity of our proposed criteria

    A Comparative Study of Z^{\prime} mediated Charged Lepton Flavor Violation at future lepton colliders

    Full text link
    Charged lepton flavor violation (CLFV) represents a transition between charged leptons of different generations that violates lepton flavor conservation, which is a clear signature of possible new physics beyond the standard model. By exploiting a typical example model of extra Z^{\prime} gauge boson, we perform a detailed comparative study on CLFV searches at several future lepton colliders, including a 240 GeV electron-positron collider and a TeV scale muon collider. Based on detailed signal and background Monte-Carlo studies with fast detector simulations, we derive the potentials in searching for Z^{\prime} mediated CLFV couplings with eμe\mu, eτe\tau and μτ\mu\tau of different future colliders. The results are compared with the current limits set by either low-energy experiments or the high-energy LHC experiments. We find that the sensitivity of the τ\tau related CLFV coupling strength at future lepton colliders will be significantly improved comparing with the current best constraints.Comment: 11 pages, 5 figure

    Financial transfers from adult children and depressive symptoms among mid-aged and elderly residents in China - evidence from the China health and retirement longitudinal study.

    Get PDF
    Although the awareness of mental health problems in late life is rising, the association between financial transfers to the older generations from children and mental health at older ages in China has received little attention. This study examines the association between financial transfers from children and depressive symptoms among the mid-aged and elderly residents (from 45 years of age and older) in China. We used the data from the China Health and Retirement Longitudinal Study (CHARLS, 2013) (n = 10,935) This included data on financial transfers from all non-co-resident children to their parents, and the individual scores on depressive symptoms as measured by the 10-item Center for Epidemiologic Studies-Depression Scale (CESD-10). A two-level - individual and community levels - mixed linear model was deployed to explore their association. Financial transfers from children to parents was the major component of inter-generational financial transfers in Chinese families. A higher financial support from non-co-resident children was signivicantly and positively related to fewer depressive symptoms (coef. = - 0.195,P-value< 0.001) among both the mid-aged and elderly parents. Financial transfers from non-co-resident children are associated with depressive symptoms among mid-aged and elderly residents in the China situation. Taxation and other policy measures should encourage and facilitate these type of financial transfers and prevent a decrease of support from children to parents

    High-speed cell recognition algorithm for ultra-fast flow cytometer imaging system

    Get PDF
    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform

    UrbanGenoGAN: pioneering urban spatial planning using the synergistic integration of GAN, GA, and GIS

    Get PDF
    Introduction: Urban spatial planning is critical for the development of sustainable and livable cities. However, traditional planning methods often face challenges in handling complex planning scenarios and large-scale data.Methods: This paper introduces UrbanGenoGAN, a novel algorithm that integrates generative adversarial networks (GANs), genetic optimization algorithms (GOAs), and geographic information system (GIS) to address these challenges. Leveraging the generative power of GANs, the optimization capabilities of genetic algorithms, and the spatial analysis capabilities of GIS, UrbanGenoGAN is designed to generate optimized urban plans that cater to various urban planning challenges. Our methodology details the algorithm’s design and integration of its components, data collection and preprocessing, and the training and implementation processes.Results: Through rigorous evaluation metrics, comparative analysis with existing methodologies, and case studies, the proposed algorithm demonstrates significant improvement in urban planning outcomes. The research also explores the technical and practical considerations for implementing UrbanGenoGAN, including scalability, computational efficiency, data privacy, and ethical considerations.Discussion: The findings suggest that the integration of advanced machine learning and optimization techniques with spatial analysis offers a promising approach to enhancing decision-making in urban spatial planning. This work contributes to the growing field of AI applications in urban planning and paves the way for more efficient and sustainable urban development

    Vat polymerization-based 3D printing of nanocomposites: A mini review

    Get PDF
    Vat polymerization, the earliest and most established 3D printing technology, offers abundant advantages of high-precision fabrication and rapid printing speed, among others. This technology is often applied to fabricated objects with complex and delicate structures, which are of specific interest in numerous fields. However, it suffers from poor mechanical properties of the resultant printed parts due to layer-by-layer manufacturing patterns and the absence of functionality, restricting the broader application of printed objects. Integrating nanomaterials with vat polymerization-based 3D printing endows the creation of products with enhanced properties and unprecedented functional adjunction with flexible designs. Giving a brief description of 3D printing technology, this review illustrates the principles and characteristics of vat polymerization technology. In this mini-review, we emphasize recent advances in nanocomposite fabricated using vat polymerization, predominantly focusing on creating nanocomposites with enhanced mechanical, thermal properties, and electrical conductivity. Finally, we summarize the article with the challenges being faced and future perspectives of nanocomposites fabricated from vat polymerization
    corecore