196 research outputs found

    Hyphenated HPLC-MS technique for analysis of compositional monosaccharides of transgenic corn glycoprotein and characterization of degradation products of diazinon, fonofos and aldicarb in various oxidation systems

    Get PDF
    The studies of this dissertation are composed of two sections. The first one deals with the analysis of compositional monosaccharides of transgenic corn glycoproteins. The method used in this study involved derivatization of monosaccharides with two fluorophores followed by HPLC/fluorescence detection for quantitative studies, and by HPLC/SSI/MS for identification confirmation of individual monosaccharide...The second section investigates the degradation processes of several pesticides including diazinon, fonofos and aldicarb in various oxidation systems --Abstract, page iv

    Ion Exchange Membranes for Electrodialysis: A Comprehensive Review of Recent Advances

    Get PDF
    Electrodialysis related processes are effectively applied in desalination of sea and brackish water, waste water treatment, chemical process industry, and food and pharmaceutical industry. In this process, fundamental component is the ion exchange membrane (IEM), which allows the selective transport of ions. The evolvement of an IEM not only makes the process cleaner and energy-efficient but also recovers useful effluents that are now going to wastes. However ion-exchange membranes with better selectivity, less electrical resistance, good chemical, mechanical and thermal stability are appropriate for these processes. For the development of new IEMs, a lot of tactics have been applied in the last two decades. The intention of this paper is to briefly review synthetic aspects in the development of new ion-exchange membranes and their applications for electrodialysis related processes

    Classification of subtypes and identification of dysregulated genes in sepsis

    Get PDF
    BackgroundSepsis is a clinical syndrome with high mortality. Subtype identification in sepsis is meaningful for improving the diagnosis and treatment of patients. The purpose of this research was to identify subtypes of sepsis using RNA-seq datasets and further explore key genes that were deregulated during the development of sepsis.MethodsThe datasets GSE95233 and GSE13904 were obtained from the Gene Expression Omnibus database. Differential analysis of the gene expression matrix was performed between sepsis patients and healthy controls. Intersection analysis of differentially expressed genes was applied to identify common differentially expressed genes for enrichment analysis and gene set variation analysis. Obvious differential pathways between sepsis patients and healthy controls were identified, as were developmental stages during sepsis. Then, key dysregulated genes were revealed by short time-series analysis and the least absolute shrinkage and selection operator model. In addition, the MCPcounter package was used to assess infiltrating immunocytes. Finally, the dysregulated genes identified were verified using 69 clinical samples.ResultsA total of 898 common differentially expressed genes were obtained, which were chiefly related to increased metabolic responses and decreased immune responses. The two differential pathways (angiogenesis and myc targets v2) were screened on the basis of gene set variation analysis scores. Four subgroups were identified according to median expression of angiogenesis and myc target v2 genes: normal, myc target v2, mixed-quiescent, and angiogenesis. The genes CHPT1, CPEB4, DNAJC3, MAFG, NARF, SNX3, S100A9, S100A12, and METTL9 were recognized as being progressively dysregulated in sepsis. Furthermore, most types of immune cells showed low infiltration in sepsis patients and had a significant correlation with the key genes. Importantly, all nine key genes were highly expressed in sepsis patients.ConclusionThis study revealed novel insight into sepsis subtypes and identified nine dysregulated genes associated with immune status in the development of sepsis. This study provides potential molecular targets for the diagnosis and treatment of sepsis

    A novel link between the proteasome pathway and the signal transduction pathway of the Bone Morphogenetic Proteins (BMPs)

    Get PDF
    BACKGROUND: The intracellular signaling events of the Bone Morphogenetic Proteins (BMPs) involve the R-Smad family members Smad1, Smad5, Smad8 and the Co-Smad, Smad4. Smads are currently considered to be DNA-binding transcriptional modulators and shown to recruit the master transcriptional co-activator CBP/p300 for transcriptional activation. SNIP1 is a recently discovered novel repressor of CBP/p300. Currently, the detailed molecular mechanisms that allow R-Smads and Co-Smad to co-operatively modulate transcription events are not fully understood. RESULTS: Here we report a novel physical and functional link between Smad1 and the 26S proteasome that contributes to Smad1- and Smad4-mediated transcriptional regulation. Smad1 forms a complex with a proteasome β subunit HsN3 and the ornithine decarboxylase antizyme (Az). The interaction is enhanced upon BMP type I receptor activation and occur prior to the incorporation of HsN3 into the mature 20S proteasome. Furthermore, BMPs trigger the translocation of Smad1, HsN3 and Az into the nucleus, where the novel CBP/p300 repressor protein SNIP1 is further recruited to Smad1/HsN3/Az complex and degraded in a Smad1-, Smad4- and Az-dependent fashion. The degradation of the CBP/p300 repressor SNIP1 is likely an essential step for Smad1-, Smad4-mediated transcriptional activation, since increased SNIP1 expression inhibits BMP-induced gene responses. CONCLUSIONS: Our studies thus add two additional important functional partners of Smad1 into the signaling web of BMPs and also suggest a novel mechanism for Smad1 and Smad4 to co-modulate transcription via regulating proteasomal degradation of CBP/p300 repressor SNIP1

    Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage

    Get PDF
    Membranes with fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells and redox flow batteries. Here we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. This was achieved by synthesizing polymers with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively-charged subnanometer-sized confined ionic channels. The facilitated transport of protons and cations through these membranes, as well as high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell. This membrane design strategy paves the way for producing a new-generation of ion-exchange membranes for electrochemical energy conversion and storage applications

    Evaluation of polymyxin B AUC/MIC ratio for dose optimization in patients with carbapenem-resistant Klebsiella pneumoniae infection

    Get PDF
    Polymyxin B has been used as a last-line therapy for the treatment of carbapenem-resistant gram-negative bacterial infection. The pharmacokinetic/pharmacodynamic index (AUC/MIC) of polymyxin B has not been clinically evaluated, given that the broth microdilution method for polymyxin susceptibility testing is rarely used in hospitals. This study analyzed data from 77 patients with carbapenem-resistant Klebsiella pneumoniae infections. Among the samples, 63 K. pneumoniae isolates had MIC values of 1.0 mg/L as measured by broth microdilution but 0.5 mg/L as measured using the Vitek 2 system. Polymyxin B AUC/MIC was significantly associated with clinical response (p = 0.002) but not with 30-day all-cause mortality (p = 0.054). With a target AUC/MIC value of 50, Monte Carlo simulations showed that a fixed dose of 100 mg/12 h and three weight-based regimens (1.25 mg/kg/12 h for 80 kg and 1.5 mg/kg/12 h for 70 kg/80 kg) achieved a cumulative fraction of response >90% regardless of renal function, but the risk of nephrotoxicity was high. For patients with carbapenem-resistant K. pneumoniae infections, the underestimation of polymyxin resistance in automated systems need to be taken into account when optimizing polymyxin B dosing based on pharmacokinetic/pharmacodynamic principles
    • …
    corecore