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Abstract: Electrodialysis related processes are effectively applied in desalination of sea and brackish water, waste water 
treatment, chemical process industry, and food and pharmaceutical industry. In this process, fundamental component is 
the ion exchange membrane (IEM), which allows the selective transport of ions. The evolvement of an IEM not only 
makes the process cleaner and energy-efficient but also recovers useful effluents that are now going to wastes. However 
ion-exchange membranes with better selectivity, less electrical resistance, good chemical, mechanical and thermal 
stability are appropriate for these processes. For the development of new IEMs, a lot of tactics have been applied in the 
last two decades. The intention of this paper is to briefly review synthetic aspects in the development of new ion-
exchange membranes and their applications for electrodialysis related processes. 
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1. INTRODUCTION 

Electrodialysis (ED) is an electro-driven separation 

process that is used for the highly efficient desalination 

of brackish water, the production of ultra-pure water, 

water softening and the removal of other charged 

impurities from water streams including waste water 

treatment to recover some valuable elements in 

chemical industry and production of many important 

chemicals. The efficiency of this process depends on 

the use of ion exchange membranes (IEMs) to remove 

unwanted charged particles from the feed stream. For 

ED process, the IEMs are expected to possess high 

permselectivity, less electrical resistance, and good 

chemical, thermal and mechanical stabilities. Although 

many developments in IEMs have come from 

researches for the chloro-alkali industry and fuel cells 

[1, 2], the development of new materials and further 

fundamental research for the ED process are not 

numerous. 

In fact, ion exchange membranes based 

electrodialysis rapidly became an industrial process for 

demineralizing and concentrating electrolyte solutions 

with the development of stable, highly selective IEM of 

low electric resistance in 1950 by Juda and McRae of 

Ionics Inc. [3] and Winger et al. at Rohm in 1953 [4]. 

Since then, a lot of efforts have been made by many 

research groups to prepare membranes with desirable  
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properties for different applications, including ED. For 

example, in 1960s, first salt production from sea water 

was realized by Asahi Co. with monovalent ion 

permselective membranes [5]; in 1969, the invention of 

electrodialysisis reversal (EDR) realized long-term run 

without salt precipitation or deposition on both 

membranes and electrodes [6]; in 1970s, a chemically 

stable cation exchange membrane based on sulfonated 

polytetra-fluorethylene was firstly developed by Dupont 

as Nafion® [7]; simultaneously, a composition of cation 

exchange layer and an anion exchange layer into a 

bipolar membrane in 1976 by Chlanda et al. [8] brings 

many novelties in electrodialysis applications today [9].  

Therefore, to awake researcher’s interest in this 

field and also to understand the present states of ED 

research, this review provides a comprehensive 

overview of IEMs covering the fundamentals as well as 

the recent development of IEMs in this field, and 

development of novel ED processes. However, this 

paper is not intended as a review of the literature in 

these areas. Instead, it is focused on recent progress in 

synthesis and some new important applications of 

major homogeneous ion exchange membranes, hybrid 

ion exchange membranes, as well as bipolar 

membranes to illustrate the improvement in ED. 

2. PREPARATION OF ION-EXCHANGE MEMBRA-
NES 

This section arranges for an overview of the 

progress in the development of ion exchange 

membranes for ED. For different applications, various 

kinds of IEMs have been developed. Some 

commercially available ion-exchange membranes, 
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Table 1: Main Properties of some Commercially Available Ion Exchange Membranes 

Homogeneous membranes 

Membrane 
Water 

content (%) 

Thickness 

(μm) 

IEC 

(meqiv g
-1

)
 a
 

Resistance 

( cm
2
)
b
 

Selectivity 

(%) 
Applications 

Ionics Inc., USA 

http://www.ionicsmembranes.com/ 

CR61-CMP - 580–700 2.2–2.5 11.0 - 
CEM 

CR67-HMR - 530–650 2.1–2.45 7.0-11.0 - 

AR103QDP - 560–690 1.95–2.20 14.5 - 

AR204SZRA - 480–660 2.3–2.7 6.2-9.3 - AEM 

AR112-B - 480–660 1.3–1.8 20-28 - 

[12, 13] 

ChemJOY, China 

http://www.cj-membrane.com/ 

CJEDMC-1 20-30 140-160 0.8-1.0 1.5-3.0 >92 
CEM 

CJEDMC-2 30-40 110-130 1.4-1.6 0.5-1.5 >94 

CJEDMA-1 20-30 140-160 0.8-1.0 2.5-3.5 >94 

AEM 
CJEDMA-2 20-30 110-130 1.1-1.3 2.0-3.0 >96 

BPM CJEDBM 50 170~190 - - - 

[14-16] 

Tingrun, China 

http://www.tingrun.com/product1/ 

CEM JCM-II-05 35~43 160~230 2.0~2.9 1~3 95~99 

AEM JAM-II-05 24~30 160~230 1.8~2.2 4~8 90~95 

BPM BPM-I 35-40 160~230 - - - 

[14, 15, 17-
20] 

Neosepta, ASTOM, Japan 

http://www.astom-corp.jp/en/product/02.html#03 

 
Stability 

(pH) 

Thickness 

(μm) 

Burst 
strength 

MPa) 

Resistance 

( cm
2
) 

Selectivity 

(%) 
Applications 

CMX 0-10 140~200 0.40 1.8~3.8 - 

CM-1 - 120~170 0.10 0.8~2.0 - 

CM-2 - 110~160 0.15 2.0~4.5 - 

CMS - 120~170 0.10 1.5-3.5 - 

CEM 

PS/DVB 

CMB 0-14 180~250 0.40 2.5~6.0 - 

AMX 0-8 120~180 0.30 2.0~3.5 - 

AM-1 - 110~160 0.20 1.2~2.0 - 

AM-3 - 100~150 0.20 2.8~4.0 - 

ACM 0-8 100~130 0.15 2.0~4.5 - 

ACS 0-8 120~200 0.15 3.0~6.0 - 

AFN 0-8 130~180 0.25 0.3~1.0 - 

AEM 

PS/DVB 

AFX 0-8 140~190 0.25 0.7~1.5 - 

BPM BP-1E - 220 - - - 

[12, 14, 19, 
21-40] 
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(Table 1). Continued. 

SELEMION
TM

, AGC Engineering Co., Ltd, Japan 

http://www.selemion.com/SELC.pdf 

CMV - 120 - 3.0 >96 

CMD - 380 - 17 >94 

CSO - 100 - 2.3 >97 

CEM 
General purpose 

membranes 

CMF - 440 - 2.5 >95 

AMV - 120 - 2.8 >96 General purpose 
membranes AMT - 200 - 6.0 >96 

AAV - 120 - 6.0 >95 

ASV - 120 - 3.7 >97 

AEM 

Special purpose 
membranes 

AHO - 300 - 20 >95 

[41-46] 

 
 

Reinforcement 

FuMA-Tech GmbH, Germany 

http://www.fumatech.com/EN/Company/ 

FKE None 1-14 10~50 1.4~1.5 0.3~0.9 98~99 

FKB PEEK 1-14 100~130 1.0~1.1 4~7 94~97 

FKL PEEK 1-14 100~130 1.0~1.2 6~10 98~99 

F-10180 PTFE 1-14 150~180 1.0 <0.5 >99 

CMI-7000 Polypropylene 1-10 450 1.6 25~30 >97 

FKD PEEK 1-14 75~90 1.2~1.4 1.0~1.2 >94 

Polyester 1-9 75~130 0.8~1.2 2.0~4.5 98~99 

CEM 

FKS 
None 1-14 10~50 1.3~1.4 0.9~1.9 98~99 

None 1-14 10~50 1.6~1.8 0.4~0.8 94~97 

FAS 
Polyester 1-9 75~130 1.0~1.4 2.0~3.0 92~97 

FAB PEEK 1-14 100~130 1.0~1.1 4~7 94~97 

FAP PEEK/PTFE 1-11 130~160 1.1~1.3 1.1~1.3 >91 

PEEK 1-14 100~130 1.4~1.6 1.9~2.5 94~96 

FAA-3 
None 1-14 10~50 1.9~2.1 0.2~0.7 92~95 

AEM 

FAD Polyester 1-9 75~90 1.5~1.7 0.4~0.8 >85 

BPM FBM PEEK 1-14 180-200 - - - 

[46-53] 

Heterogeneous membranes 

Qianqiu, China 

http://www.china-qianqiu.com/ 

Membrane 
Water 

content (%) 

Thickness 

(μm) 

IEC 

(meqiv g
-1

) 

Resistance 

( cm
2
) 

Selectivity 

(%) 
Applications 

CEM Qian-qiu CEM - 460~500 2.0 13 93 

AEM Qian-qiu AEM - 460~500 1.8 16 95 

[54] 

Shchekinoazot, Russia[55] 

http://n-azot.ru/download/product/product_348.pdf 

Membrane 
Contact 

angle (°) 

Thickness 

(μm) 

IEC 

(meqiv g
-1

) 

Conductivity 

(mS cm
-1

) 

Selectivity 

(%) 
Applications 

MK-40 52~58 470~490 1.6~1.8 7.4~7.7 - 
CEM 

MK-40/Nf 61~67 490~510 1.6~1.8 8.0~8.6 - 

MA-40 48~52 450~490 3.12~3.28 7.2~7.8 - 
AEM 

MA-40M 45~49 450~490 3.12~3.28 5.2~5.8 - 

[56, 57] 

a
Ion exchange capacity was determined for wet membranes in the sodium form (cation exchange membranes) or in the chloride form (anion exchange membranes); 

b
The measurement conditions to determine the resistance (area resistance) varied with companies: AGC Engineering Co., Ltd,0.5M NaCl at 25 ˚C; FuMA-Tech, 

GmbH, 0.6M NaCl at 25 ˚C; Astom Co., 0.5N NaCl at 25 ˚C; Tianwei Co., 0.1N NaCl at 17 ˚C. 
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manufacturers and their properties are shown in Table 

1 [10, 11]. 

2.1. Homogeneous Ion Exchange Membrane 

In order to supply suitable membranes for ED 

application and to expand the opportunity to new 

potential applications, the search for new materials for 

ion-exchange membranes has kept on the rise. To 

prepare homogeneous IEMs, various tactics are 

available to introduce ionic groups. These tactics can 

be divided into three classes based on the starting 

materials. 

1) Polymerization or polycondensation of 

monomers; at least one of them must comprise a 

moiety that either is or can be made cationic or 

anionic groups, respectively. Then the charged 

polymers undergo film processing to form 

membranes  

2) Charge moieties insert ion to polymer chains 

followed by the formation of membranes  

3) Introduction of functional charge groups on the 

already film-formed membranes either directly by 

grafting of a functional monomer or indirectly by 

grafting nonfunctional monomer followed by 

functionalization reactions. 

2.1.1. Direct Polymerization from Monomer Units 

The direct synthesis of polymer from monomer units 

gives excellent opportunity to control the functional 

groups quantity and distribution along the polymer 

backbones. Moreover, this process helps to regulate 

both microstructure and properties of the ion-exchange 

membranes. IEMs via direct polymerization of 

monomers, in which, at least one of them must contain 

a moiety that is or can be made anionic or cationic, 

respectively, have been successfully reported [58-60]. 

If such amembrane is prepared from monomer, 

styrene and divinyl benzene are most frequently used 

starting material for a conventional hydrocarbon type 

ion exchange membrane for industrial uses, from which 

cation exchange membranes (CEMs) are readily 

obtained through sulfonation of the aromatic ring with 

chlorosulfonic acid whereas anion exchange 

membranes (AEMs) are prepared through 

halomethylation, especially chloromethylation, followed 

by quaternization. Usually chloromethyl ether (CME), a 

carcinogenic and hazardous chemical, was used for 

chloro- methylation reaction and its use has been 

restricted since 1970s. 

As shown in Figure 1, alternative methods have 

been proposed to minimize the hazards involved in the 

preparation of AEMs such as polymerization of 

halomethyl substituted aromatic monomers (i.e. 

chloromethylstyrene), followed by quaternization with 

alkylamine [58], and polymerization of p-methylstyrene 

and subjected to benzylic bromination followed by 

amination to obtain quaternary ammonium sites [59]. 

As electronic properties of conducting polymers 

(CP) are useful for ED application, they are materials 

 

Figure 1: Safer route for preparing anion exchange membrane a) from chloromethylstyrene and b) from p-methylstyrene [59]. 
Copyright (2014), Modified with permission from Elsevier. 
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with an enormous projection. Among them, 

polythiophene derivatives are very important, since 

their serious problems of solubility and processability 

have been solved recently. Poly(2-thiophen-3-yl-

malonic acid), a new CP bearing two carboxylate units 

per thiophene ring, has been derived from the alkaline 

hydrolysis of the poly(2-thiophene-3-yl-malonic acid 

dimethyl ester), which was obtained by chemical 

oxidative coupling polymerization [60]. 

2.1.2. Direct Modification of Polymer Backbone 

For soluble polymers, polyarylene polymers 

containing aromatic pendant groups on polymer 

backbones such as poly aryl sulfone, poly aryl ketone, 

and polyphenylene oxides, the corresponding 

membranes can be obtained either by introducing 

anionic or cationic moieties, followed by the dissolving 

of polymer and casting it into a film [61-74]. For the 

preparation of IEMs, these polymers are attractive as 

the polymer matrix due to several reasons: (1) their 

high mechanical and thermal stability, (2) good proces-

sibility, (3) relatively high glass transition temperature 

(Tg), (4) low cost, and (5) the ability to chemically 

modify the polymer backbone via the electrophilic 

substitution at their aromatic skeletons [11]. However, 

for membrane preparation with these soluble polymers, 

its chemical stability is not so good and often needs 

post treatment, such as crosslinking [65, 66]. 

Poly(aryl sulfone) 

Poly(arylsulfone)s such as polyether sulfones 

(PES), have strong mechanical, thermal and chemical 

stability and have been successfully used as ion 

exchange membranes in electro-chemical applications 

[61-66]. For use as a cation exchange membrane, PES 

must be functionalized to incorporate fixed negatively 

charged groups. For the functionalization of PES, 

sulfonation is commonly used over other forms such as 

carboxylation or phosphonation, as the process is 

comparatively simple and yields membranes show 

good ion transport properties. There are different 

sulfonation methods to add sulfonic acid groups to PES 

chain in heterogeneous or homogeneous media with 

sulfuric or chlorosulfonic acid. However, if 

chlorosulfonic acid is used as sulfonating agent, 

sometimes PES chains cleave or undergo branching 

and crosslinking reactions by the conversion of the 

intermediate sulfonic acid group into a partially 

branched or cross-linked sulfone unit [75]. Additionally, 

the amount of these side reactions for the sulfonation 

of PES mostly depends on the reaction conditions and 

polarity of the solvents used [61]. 

Also, it is difficult to control the degree of sulfonation 

and chemical structure of a sulfonated polymer if the 

polymer is directly sulfonated with chlorosulfonic acid 

or concentrated sulfuric acid. In the course of the 

sulfonation process, it is often the main chain that 

becomes sulfonated, however side chain sulfonation 

increase the chemical and mechanical properties of the 

polymer [76]. Hence, for potential application in ED with 

suitable properties, random and multiblock side-chain 

sulfonated polyether sulfones (sPES) was prepared by 

condensation polymerization using 2,5-diphenylhydro-

quinone, 4,4 -Difluorodiphenyl sulfone, and 4,4 -

dihydroxydiphenyl sulfone as monomer [62]. 

Noted that electrochemical properties of sPES 

membranes not only depend on the sulfonation 

processes and structure of the PES but also on the 

way of preparation [63, 64]. Membrane prepared by the 

solvent evaporation method shows better 

electrochemical properties than the membrane 

prepared by the phase inversion method. Also, by 

tuning both the wet film thickness and film drying time 

before immersing in water bath to form membrane 

sheet, the morphology of the membranes can be easily 

controlled [64]. 

Poly(aryl ether ketone)  

Poly (aryl ether ketone) has also been used as IEM 

matrix [67-70]. The modification of the polymer 

backbone can be carried out in the similar way used for 

PES polymer material. However, uncrosslinked 

sulfonated membranes show high swelling ratio which 

reduces mechanical properties and ion permselectivity, 

and thus prohibits them from applying in 

electromembrane processes, especially at higher 

temperature. For these reasons, these polymers are 

often blended with non-functional polymers or cross-

linked by different means to enhance and modify the 

transport properties [69, 70]. 

Polyphenylene Oxides (PPO) 

From engineering polymer poly(2,6-dimethyl-1,4-

phenylene oxide) (PPO), anion exchange membranes 

have been prepared either by chloroacetylation-

quaternary amination or by bromination-amination 

process as shown in Figure 2 [71-73].  

The new route for preparing AEMs as proposed in 

the Figure 2a shows several advantages over the 

traditional one (chloromethylation, followed by 

quaternization): (1) avoiding the use of chloromethyl 

methyl ether (CME), a carcinogen and is potentially 
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harmful to human health, normally used in the 

conventional preparation procedure of AEMs, and the 

process can be easily controlled through the Friedel–

Crafts reaction, which is a kind of simple and well 

investigated reactions; (2) the used materials are 

conventional agents with low toxicity [71]. Via 

chloroacetylation, the membranes with high IEC can be 

obtained. Nevertheless, the physical stability of the 

resultant membranes still requires more improvement. 

This problem can be solved by the introduction of 

bromination substitutions (Figure 2b) which can occur 

on both aryl and benzyl positions. Now it can be easily 

aminated and can also be created cross-linking to 

some extend among the functional groups of the 

membranes [72, 73]. It is noted that this crosslinking 

can also be conducted after the formation of base 

membrane [10]. 

The cation exchange membrane can also be 

obtained with the same way: by bromination and 

sulfonation (Figure 2c) or directly by sulfonation [10, 

74]. 

2.1.3. Charge Induced on the Film Membranes 

The IEM can also be prepared by forming the non-

iongenic polymer films firstly, subsequently by the 

introduction of charged functional groups onto the 

formed polymer films either directly by grafting of a 

functional monomer or indirectly by grafting 

nonfunctional monomer followed by functionalization 

reaction. 

Both porous and non-porous membranes can be 

used as the film substrates. Typical examples of 

grafting substrates include hydrocarbon polymer based 

films of polyethylene (PE), polypropylene (PP), 

polyalkene (polyalkene non-woven fabrics (PNF)), and 

fluorocarbon polymer based films of polyvinylidene 

fluoride (PVDF) and polytetrafluoroethylene (PTFE). 

For the grafting agents, there are two major 

categories; (1) functional monomers such as acrylic 

acid, methacrylic acid that can be directly attached to 

the substrate as charged functional groups and (2) 

non-functional monomers such as styrene, glycidyl 

methacrylate (GMA, the ester of methacrylic acid and 

2,3-epoxy-propanol that bears a reactive epoxy group) 

and vinylbenzyl chloride that can be further chemically 

modified into the ion-exchangeable. 

Radiation-induced graft copolymerization is well 

known for its merits and potential to transform the 

chemical and the physical properties of pre-existing 

polymeric materials without altering their intrinsic 

properties. Using this methodcation exchange 

membrane for electrodialysis application was early 

prepared by grafting of methacrylic acid onto preformed 

polymer film PE [77]. Another type of membranes 

prepared by grafting of fluorinated monomers such as 

 

Figure 2: Main reactions and structures of IEMs from PPO: (a) anion-exchange membranes prepared by Friedel-Crafts 
chloroacetylation, (b) anion-exchange membrane prepared by bromination and amination and (c) cation-exchange membrane 
prepared by bromination and sulfonation reaction [10, 71]. Modified with permission from Elsevier. 
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methyl trifluoro-proproenoate onto PTFE films was 

found to be promising for electrodialysis processes as 

the use of fluorinated monomer imparted more 

chemical stability to membranes [78]. 

Both anion and cation exchange membranes can be 

obtained from the same precursor prepared by the 

radiation-induced grafting of glycidyl methacrylate 

(GMA), and subsequent chemical modification of 

poly(GMA) graft chains by different ways i.e. amination 

gives anion exchange, sulfonatin or phophonation 

gives cation exchange membranes [79, 80]. The anion 

exchange membranes can also be prepared by grafting 

of vinylbenzyl chloride onto fluorinated PVDF films 

followed by amination reaction to convert the functional 

groups to amine derivatives [81].  

Into Nafion precursor, made by DuPont, usually 

charge induces through the hydrolysis of this resin with 

sulfuric acid and hydrogen peroxide to form a 

perfluorosulfonic polymer. It is a logical support for a 

thin carboxylic acid-form membrane onto Nafion to 

decrease water permeability because the sulfonic acid 

form of this membrane is highly permeable to water 

and ions. The carboxylate layer could be created by 

two ways; (1) cast or laminated onto a sulfonate layer 

(e.g., Nafion 90209) and (2) by modifying the surfaces 

of a sulfonate-form membrane. To create very thin, 

defect-free carboxylate layers on already thin starting 

films, surface modification is the better way [82]. The 

general surface modification reaction of Nafion has 

included four primary steps: reduction of sulfonyl 

fluoride to sulfinic acid, hydrolysis of residual sulfonyl 

fluoride to sulfonate, oxidation of sulfinic acid to 

carboxylic acid, and cleaning of the resultant ionomer. 

2.2. Mixed Matrix Ion-Exchange Membrane 

Actually it is difficult to acquire all the targeted 

properties in one IEM to satisfy the requirements of 

particular application. In fact, different applications 

usually require specific membrane properties. For 

electrodialysis, the ion-exchange membranes are 

expected to possess high permselectivity, excellent 

conductivity, and good chemical, thermal and 

mechanical stabilities. As most polymer based IEMs 

have some common drawbacks including insufficient 

mechanical, chemical and thermal stabilities, and poor 

fouling resistance, they are still insufficient for the ED 

process. The concept of combining two distinct 

materials forming a new composite that keeps 

desirable properties of both components is an 

alternative method for the development of new IEMs 

with excellent electrochemical properties and good 

mechanical stability. Table 2 provides examples of 

composite (or mixed matrix) ion-exchange membranes 

prepared from different routes and some of their 

properties for electrodialysis applications. 

Inorganic-organic composite materials have gained 

increasing attention due to its specific properties 

Table 2: Preparation Routes of Mixed Matrix Ion-Exchange Membranes and the Resultant Membrane Properties 

Mixed matrix 
system 

Preparation 
route 

Property Reference 

PVA-Silica Sol-gel 
-Permselectivity of 0.91-0.94 

-Conductivity up to 7.61 mS cm
-1

 
[83, 84] 

sPES-sulfonated 
silica 

Blending 
The composite showed good ionic conductivity, transport properties while 

maintain acceptable mechanical and thermal stability. 
[85-88] 

PVDF-Silica Blending 

-IEC of 0.8-2.0 

-Porosity of 0.10-0.19 

-Permselectivity up to 0.98 

[89-91] 

PVC-Rasine Blending 

-IEC of 1.1-4.0 

-Transport number up to 0.96 

-Permselectivity up to 0.91 

[92-95] 

PVC-SBR-
Rasine 

Blending 

-Membrane resistance of 4.4-13.0 .cm
2 

-Transport number up to 0.99 

-Permselectivity of 0.67-0.99 

[96-101] 

PES-Rasine Blending 

Membrane prepared by solvent evaporation method showed higher transport 
number, 

permselectivity, and relative transport number compared to gelation method. 

[102] 

HIPS-PAni Blending 
The ion percent extraction for mixed matrix membrane is similar to that 

observed for the commercial membrane. 
[103-105] 
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originated from the components in the composite. The 

organic counterpart of the composite membrane 

provides opportunities of chemical modifications, 

structure flexibility, and processibility on large scale. On 

the other hand, the main characters of the inorganic 

fillers in composite membranes are to retain water 

inside the membrane, to improve conductivity, while 

maintaining good chemical, mechanical and thermal 

stability. 

Mixed matrix ion-exchange membrane can be made 

by several routes including sol–gel process, 

intercalation, blending, in situ polymerization, molecular 

self-assembling, but probably physical blending and 

sol–gel process are the most prominent technique as 

depicted in Figure 3 [11]. For the first approach, the 

resultant membranes normally show phase separation 

from aggregated fillers, causing mechanical instability 

of the composite membranes. On the other hand, sol-

gel method offers better interconnection between two 

domains. 

It is known that a big problem in development of 

composite materials is the distribution of inorganic 

nanoparticles in the organic matrix due to the 

aggregate tendency of the nanoparticles. However, by 

enhancing the interaction among them via covalent 

bond, hydrogen bond, and electrostatic interaction, this 

problem can be reduced. Frequently used strategies for 

enlightening the interaction between inorganic and 

organic matrix are; (1) functionalization of inorganic 

fillers or/and polymer matrix (2) introduction of the 

inorganic filler on the polymer chains. The 

functionalization of mesoporous SiO2 using sulfonate 

groups is a good policy to enhance the distribution of 

the nanoparticles in the polymer matrix [85-88]. 

Moreover, the addition of functionalized mesoporous 

nanoparticles not only increases charged functional 

groups in the composites, but also improves the ionic 

transport properties due to their high surface area and 

well-accessible mesopores. 

Mixed matrix ion-exchange membrane can also be 

made by mechanical incorporation of powered ion-

exchange resin into sheets of rubber, PVC, acrylonitrile 

copolymers or some other extrudable or mouldable 

matrix. Such membranes can be prepared by different 

methods; (1) dry moulding of inert film forming 

polymers and ion-exchange particles and then milling 

the mould stock, (2) calendaring ion-exchange particles 

into an inert plastic film, and (3) resin particles can be 

dispersed in a solution containing a film forming binder 

and then the solvent is evaporated to give ion-

exchange membrane. To increase mechanical stability, 

such composite membranes may also be reinforced 

with a chemically resistance fabric. 

Recently, a two-step phase inversion membrane 

formation technique has been developed for the 

preparation of composite membrane which allows a 

good control of the membrane structure, porosity and 

electrochemical properties [86]. In this procedure 

polymer with ion exchange group firstly dissolved in a 

solvent. The polymer solution is then cast on glass 

 

Figure 3: Two frequently used preparation methods for mixed matrix ion-exchange membranes (composite membranes): route I 
blending and route II sol-gel method [11]. Copyright (2013), modified with permission from John Wiley & Sons, Inc. 
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substrates with different solution thickness and then 

partially dried in a vacuum oven at 60 C with different 

aging times before precipitating in 60–70 C DI water. 

By tuning the aging time before precipitating the partly 

dried film in water bath, membrane porosities can be 

control via this new technique. Among the IEMs 

prepared by this method, membranes with 

interconnecting pore structure show good ionic 

conductivity but their transport number and selectivity 

are very poor. On the other hand, membranes with 

smaller pores and denser surface are more selective, 

but less conductive. 

2.3. Bipolarmembrane 

A bipolar membrane (BPM) is a composite 

membrane consists of an anion-exchange layer and a 

cation-exchange layer and usually has a catalytic 

intermediate layer (InL) between the two ion exchange 

layers. Recently bipolar membrane has gained 

increasing attention as an efficient tool for the 

production of acids and bases from their corresponding 

salts by electrically enforced accelerated water 

dissociation. Actually, water dissociation takes place at 

the InL between ion exchange layers (CEL and AEL) of 

BPM and particularly depends on their properties. 

However, a noble BPM should have high selectivity, 

water dissociation efficiency, acid and base stability 

over wide pH range, low salt diffusion, along with good 

thermal and mechanical stability. These desired 

properties can be obtained by suitable membrane 

forming materials, selection of InL and membrane 

casting methodology. 

For preparing bipolar membranes with suitable 

properties, various methods has been initiated, such as 

laminating polymeric films with fixed charges of 

opposite polarity with heat and pressure or with an 

adhesive paste [106], preparing by casting a cation 

exchange polyelectrolyte solution onto an anion 

exchange membrane or vice-versa [107], or preparing 

from the same base membrane by simultaneous 

functionalizing at the two membrane sides [108] or 

selectively functionalizing on one side to give cation 

selectivity and on the other side to give anion selectivity 

[109], etc. Among these, the casting method is the 

most efficient one for the preparation of such 

membrane because it is simple, less costly and also 

allows a bipolar membrane with desired properties 

[110]. Using this method, novel bipolar membranes 

have been prepared by casting the sulfonated PPO 

solution on a series anion exchange membranes [111]. 

Actually, the function of the two ion exchange layers 

in a bipolar membrane is to selectively transport the 

water dissociation products, protons and hydroxyl ions, 

at the InL and block co-ions. However, water 

dissociation mainly depends on the charged groups 

and structure of InL region and thus usually is modified 

to enhance the bipolar membrane’s performance. As 

catalysts in the bipolar junction, immobile weak acids or 

bases with an equilibrium constant of the acid/base pair 

close to that of the water dissociation reaction (pKa = 

7) could be used, such as amino groups, sulfonic acid 

groups, amide groups, hydroxyl groups, pyridine 

groups [112-116] as well as metal ion/metal ion 

complexes, such as Aluminum, Magnesium, Iron, 

Cupper, etc. [116-120]. Also, metal ions are 

immobilized by placing their insoluble salts or low 

soluble (multivalent metal ion) hydroxides in the 

intermediate layer or using a soluble salt with a 

subsequent treatment [121].  

Our research group has developed a series of 

bipolar membranes to demonstrate the catalytic activity 

of different macromolecules whose anion exchange 

layers were modified with a variety of (bio)-

macromolecules beforehand. The list includes 

hydrophilic materials such as hyperbranched aliphatic 

polyesters of the Boltorn series, polyethylene glycol 

(PEG), polyvinyl alcohol (PVA), polyamphoteric bovine 

serum albumin (BSA), and a dendrimer molecule 

polyamidoamine (PAMAM) which possesses higher 

amino groups [113, 122-125]. The catalysts can be 

immobilized before or after the film formation. There 

have been several techniques applied: spray or dip-

coating, incorporating in the polymer material by even 

dispersion, by electrochemical methods after formation 

of the layers or by in situ polymerization, electrospray 

deposition, layer-by-layer (LbL) assembly of 

polyelectrolyte multilayers [126-130].  

The LbL deposition of polyelectrolyte multilayers is 

an effective method to introduce molecularly thin 

catalyst groups at this interface of bipolar membranes 

[130]. By this method, the bipolar membranes are 

prepared by first modifying an AEM via successive 

dipping LbL assembly, then casting a thin highly 

charged intermediate layer followed by casting a CEM. 

3. ELECTRODIALYSIS APPLICATIONS OF ION 
EXCHANGE MEMBRANES 

Electrodialysis (ED) as a novel process has grown 

rapidly during last decades. At first the ED was mainly 

used for the separation and production processes 
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based on ion exchange membranes, which mainly 

includes conventional electrodialysis (CED), electro-

electrodialysis (EED), bipolar membrane electrodialysis 

(BMED or EDBM) and electrodialysis deionization 

(EDI), etc. There are several comprehensive reviews 

which summarized ED utilization in organic acid 

productions [131], in environmental protection [132], for 

sustainable development [133], in separation process 

[134], in bioproducts transforming [135]. During last 

decades of development, ED has also been used for 

the energy reclamation from concentration gradient that 

called reverse electrodialysis (RED) [136-138]. 

However, the following will focus on the reclamation of 

useful resources such as nitrogen, phosphorus, 

precious metals and organic compounds from factory 

byproducts, wastewaters and brines, etc. 

3.1. Recovery of N&P  

Nitrogen and phosphorus are very important 

nutrients for the grown of crops which phosphate 

account for 2-4% of the dry weight of most cells. During 

the past decades, the demand for nitrogen and 

phosphorus increases rapidly for growing dairy- and 

meat-based diets. However, phosphorus has no 

substitute in food production and can only be extracted 

from phosphorous mining; in the same case, the 

production of ammonia requires nearly 1 m
3
 of natural 

gas per kg, moreover, commercial nitrogen fertilizer 

cost increase rapidly with increase of raw materials 

price. The excessively dissolved phosphorus and 

nitrogen nutrient would induce water deterioration and 

eutrophication as well as green-house gas emissions. It 

is important to consider any possible methods to 

recycle nitrogen and phosphorus from wastewater. 

Electrodialysis as an efficient separation process has 

been used for the extraction of nitrogen and phosphate. 

Akyeva et al. [139], used electrodialysis to treat 

wastewater effluent from phosphoric acid extraction 

process. In this process, the phosphate extraction 

efficiency greatly depends on the applied current 

density. Particularly, low value of current density is 

suitable to block transition of triple-charged ions (PO4
3-

) 

as a consequence; conventional electrodialysis is a 

potential process for phosphorus reusing. Zhang et al. 

[48], used electrodialysis configured with selective ion 

exchange membrane (SED) to recover phosphate from 

struvite reactor (see Figure 4). The selective 

membrane only allows the passive of mono-valent ions 

and blocks the multi-valent ions. To maintain the 

recovery rate of phosphate, the experiments were 

carried out at pH 9 which was adjusted by adding 

NaOH. Here phosphate was removed from feed 

compartment and recovered at product compartment 

simultaneously. For the aerobic effluent as the 

phosphate source, the current efficiency initially 

reached 72%, with a satisfying phosphate 

concentration (9 mmol L
-1

). In the experiments with the 

anaerobic effluent, the phosphate flux was 16 mmolm
-2

 

h
-1

. A cost evaluation shows that 1 kWh electricity can 

produce 60 g of phosphate by using a full scale stack, 

with a desalination rate of 95% on the feed wastewater. 

Finally, a struvite precipitation experiment shows that 

93% of phosphate can be recovered. In our group [17], 

both conventional electrodialysis and bipolar 

membrane electrodialysis as well as their integration 

were used to recover phosphate from excess sludge. 

Firstly, simulated wastewater was treated with CED to 

recover phosphate. The concentration of phosphate 

was enriched to 1600 mg/Land then was pumped into 

EDBM process and transformed to valuable alkali 

solution and phosphate acid. Using continuous 

operation model, 95.8% recovery ratio could be 

achieved. However, at 50 mA/cm
2
 operating current 

density, the net production of phosphorus acid was 

about 0.075 mol/L with a current efficiency about 75% 

and energy consumption rate about 29.3 kWh/(kg 

H3PO4). There also some other phosphorus recovery 

ED process, such as phosphoric acid from liquid crystal 

display (LCD) manufacturing process [33], the recovery 

of organic phosphorus composition from seawater 

[140], etc. 

3.2. Recovery of Base 

NaOH as its inherent strong absorption ability 

toward acid gas has been used to remove H2S, CO2, 

and CS2 from the gaseous petroleum fractions and 

corrosive streams which are usually called sweetening. 

Simultaneously, in prewash section of a Merox tower, 

acidic gases (H2S, CO2) are eliminated by using caustic 

solution. This process can be represented by the 

following reactions: 

 
H

2
S+NaOH Na

2
S+2H

2
O          (1) 

 
CO

2
+2NaOH Na

2
CO

3
+H

2
O          (2) 

The excess amount of NaOH is often used to 

achieve complete elimination of acidic gases and 

hence a large amount of NaOH is periodically 

discarded via spent caustic stream which would induce 

great environmental pollution. Keramati et al. [141], 

used electrodialysis to recover NaOH from waste 

stream of Merox tower (see Figure 5). Moreover, to 

improve NaOH recovery ratio and the applied current 
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efficiency, a cation exchange resin imported into dilute 

compartment to mitigate concentration polarization. 

The results indicate that a maximum NaOH recovery 

ratio of 75% was obtained for electrodialysis, and it is 

improved to 85% value by the introducing of cation 

exchange resin. 

Besides, organic base, such as tetramethyl 

ammonium hydroxide (TMAH), which is often produced 

from photoresist developer wastewater, is another kind 

of hazardous material. It was recently recovered and 

recycled using electrodialysis in our group [15]. By this 

method, TMAH can be re-concentrated into the range 

of 7.45-8.33% mass concentration with a process cost 

about 36.4 $/t besides the recovered TMAH profits. 

3.3. Recovery of Acid 

Inorganic acids such as HCl, H2SO4, HNO3, HF, HI 

are often produced in industries of electroplating, 

metallurgy, biological fermentation and rare earth 

industry, etc. If the concentration is high (>1 mol/L), the 

acid can be recovered by diffusion dialysis (DD). Due 

to the concentration limit of DD process, it is not proper 

for acid with low concentration and this waste with low 

acid concentration can be concentrated through 

 

Figure 4: Flow scheme of Phosphate recovery from wastewater using selective electrodialysis (SED) [48]. Copyright (2013), 
Reprinted with permission from American Chemical Society. 

 

 

Figure 5: Batch mode experimental set-up of ED system (three-compartment cell) [141]. Copyright (2010), Reprinted from with 
permission from Elsevier. 
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electrodialysis and be recycled into the initial process. 

For examples, Kaoru et al. [142] used a three-

compartment electrodialyser to treat the complex of 

hydriodic acid and iodine solution. In this process, I

moves from feed compartment through anion exchange 

membrane toward cathode compartment and oxidized 

to I2, at the same time, H
+
 moves toward anode 

compartment simultaneously where I2 is reduced to I . 

Hydriodic acid was also recovered by electro-

electrodialysis (EED), a combination of electrolysis and 

electrodialysis with ion exchange membranes process 

[143]. Normally, EED mainly composes of two 

compartments: cathode compartment where reduction 

occur and anode compartment where oxidation occur, 

and one ion exchange membrane which was placed 

between two compartments allowing the passive of 

counter ions under the potential gradient. In this HI acid 

recovery process, the current efficiency is influenced by 

the temperature. At 293K, the current efficient was 

about 85.1%; on the other hand, at 333K it was about 

82.5%. Hydrochloric acid is also a widely used 

inorganic acid in the field of hydrometallurgical, 

pharmaceutical, food industry. However, the effluent 

that contains hydrochloric acid must be treated as their 

potential threat to environment. There are some works 

focusing on hydrochloric acid recovery from wasters 

[144, 145]. Our group [20] used integrated diffusion 

dialysis (DD) and conventional electrodialysis (CED) to 

recover hydrochloric acid from simulated 

chemosynthesis aluminum foils wastewater. In this 

method, initially the simulated wastewater was imputed 

into a spiral wound diffusion dialyser for recovering 

hydrochloric acid. Then the recovered low 

concentrations hydrochloric acid was reconcentrated 

by a conventional electrodialysis stack with a common 

configuration. To understand the compatibility and 

operational uniformity between DD and ED dialysate, 

flow rate and CED current were adjusted. The results 

indicate that high hydrochloric acid recovery rate of 

74.9% was obtained with the energy consumption of 

0.41 kW h and low aluminum leakage of 12.2%. There 

are some other ED based useful acid reclamation 

processes from pickling wastewater [146-148], 

recovery of nitric acid [36, 149], especially, the 

recovery of metallic ion from pickling or plating waster 

as an independent process will be summarized in a 

separate section hereafter. 

Besides inorganic acids, organic acid recovery 

using electrodialysis has also been studied for a long 

time. Citric acid, an organic acid, has been widely used 

for food industry, chemical and textile industry, 

environmental protection, cosmetics industry and 

pharmaceutical industry, etc. It is often synthesized 

using fermentation method with a subsequent addition 

of sulphuric acid and lime to clarify fermentation broths 

[150]. Due to this case, ED based separation process 

has been used as an alternatively to the conventional, 

such as bipolar membrane electrodialysis [151-156]. A 

comprehensive review has summarized the application 

of electrodialysis to the production of organic acids in 

detail [131]. 

3.4. Recovery of Ionic Liquids (ILs) 

Ionic liquids (ILs), novel solvents, exhibit excellent 

properties, such as non-volatility, non-flammability, high 

electric conductivity, excellent catalytic activities and 

good phase separation performance. By virtue of these 

particular properties, ILs have been used for the 

extraction of biomass. However, the regeneration of 

biomass from ILs often produces large amounts of 

dilute waster with ILs. The disposal of ILs dilute 

wastewater may cause environmental issues due to 

their slow degradation and toxicity. ILs always consist 

of salts containing various heterocyclic cations and 

anions or other complex anions which could dissociate 

freely in aqueous solution. ED is often used as an 

optional process for the recovery of ILs. For examples, 

Trinh et al. [26] used it to recover an ionic liquid1-butyl-

3-methylimidazolium chloride [BMIM]Cl from a 

hydrolysis of lingocellulosic biomass. The results 

indicate that 64% ILs can be recovered with 63.5 % 

current efficiency. The similar recovery was also 

conducted by Lu et al. [157]. Wang et al. [54] used this 

process for the recovering of 1-hexyl-3-

methylimidazolium chloride ([Hmim]Cl) and 1-butyl-3-

methylimidazolium tetrafluoroborate ([Bmim]BF4). The 

results showed that the highest ILs reached to 85.2% 

and highest overall current efficiency reached to 80.9% 

with high specific energy consumption of 1350 g/kWh. 

Using this noble process, Haerens et al. [52] produced 

ILs of choline thiocyanate, choline acetate and choline 

dicyanamide from starting product choline chloride with 

a high current efficiency between 65% and 78%. 

3.5. Recovery of Metals from Wastewater 

In chemical engineering industries such as 

hydrometallurgical, machinery manufacturing, 

electroplating, electronic industry and instrument 

manufacturing, there often produces large quantity of 

waste containing metal ions of chromium (Cr), copper 

(Cu), nickel (Ni), cadmium (Cd), gold (Au), and zinc 

(Zn). 
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Chromium often exists as Cr (III) or Cr (VI) form in 

the wastewater produced from electroplating, leather 

tanning, cement and dyeing/fertilizer/photography 

industries. Chromium ion, especially hexavalent 

chromium Cr (VI) has been reported to be toxic to 

animals and humans and it is known as carcinogenic 

[158]. The direct discharge of the effluents would 

induce severe environmental problems. Gayathri et al. 

[159] used hybrid technology of ED and ion exchange 

to recover Cr (VI) from chrome plating wastewater. The 

efficiency of this method to remove and recover the 

chromium from the effluent was about 100% for the 

different modes of operation like 1) batch recirculation 

process; 2) batch recirculation process with continuous 

dipping; 3) continuous process. Chen et al. [45] used a 

two-stage ED (TSED) process for the recycling of Cr 

(VI) from electroplating wastewater (see Figure 6). In 

this process, the raw wastewater was concentrated by 

first stage ED at low pH condition. The concentrated 

stream was then adjusted to pH 8.5 followed by 

treating with second stage ED which configuring mono-

valent anion permselective membrane and non-

selective cation exchange membranes. The chromate 

in concentrated stream was concentrated up to 191% 

in the first stage and in the second stage; chloride was 

separated about 45% from CrO4
2

. Nataraj et al. and 

Peng et al. [160, 161] also used ED to recover Cr (VI) 

from plating wastewaters. Cr (III) as another chromium 

in the environment is more stable and less toxic 

compare to Cr (VI). Lambert et al. [22, 35] used mono-

valent cation selective membrane for the selective 

recovery of Cr (III) from tanning process in the leather 

industry. The final results demonstrated that separation 

of trivalent chromium and sodium ion is possible. 

To improve the corrosion resistance and provide 

decorative characteristics, electroplating and metal 

finishing processes often use several hazardous 

chemical and toxic compounds such as nickel. 

However, the effluent always contains nickel salts and 

organic additives that should be treated. ED as an 

excellent separation process has been used for the 

recovery of useful nickel from rinse water. For example, 

Benvenuti et al. [162] used ED to concentrate and 

extract nickel (Ni) and its salts from the bright nickel 

electroplating process. In this extraction process, the 

recovery rate of nickel reached to 90mA A
-1

 h
-1

 cm
-2

 

with an energy consumption of 0.7 kW h for 1 kg 

NiSO4·H2O. Li et al. [163] also used ED to separate 

nickel ions from pent electroless nickel plating bath. ED 

combined with ion exchange has also been used to 

recover nickel from dilute solution [51, 53, 164, 165]. A 

highest recovery rate of 99% (Ni) was obtained by the 

using Dowex 50WX-2 resin [51]. After the treatment, 

the concentration of nickel in the process solution 

decreases from approximately 5 ppm to less than the 

detection limit of the analysis (<20 ppb) [164]. Modified 

ED using special membranes such as liquid membrane 

and mono-valent selective membrane were also used 

for the selective recovery of nickel from electroplating 

industry [166, 167]. 

Besides chromium and nickel, lithium is a growing 

metal that is often used in production of glass and 

 

Figure 6: Schematic flow diagram for the TSED process to demonstrate the transportation of the major ions [45]. Copyright 
(2009), Reprinted from with permission from Elsevier. 
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ceramic, air conditioning refrigeration systems, primary 

and second batteries, and nuclear energy production. 

Generally, lithium was extracted from lake brine or 

sweater instead of ore. Conventional extraction 

procedure of lithium requires high energy consumption 

and would induce sever environmental problem. ED is 

used as an optional process for the separation of 

lithium from lake brine, seawater and water. Recently, 

our group [19] used the integration of ED and bipolar 

membrane electrodialysis (BMED) for the production of 

LiOH from lake brine. In this process, the lake brine is 

treated with Na2CO3 to precipitate Ca and Mg ion 

followed by concentrating the effluent with low 

concentration lithium ion. The lithium ions are then 

extracted from concentrated brine by adding of Na2CO3 

as Li2CO3 followed by treating the obtained Li2CO3 with 

BMED to produce LiOH (see Figure 7). The final results 

indicate that the concentration of lithium increased from 

879 mg/L to 3157 and 3485 mg/L respectively, for two 

operating voltage of 10V and 15V, as well as a high 

purity of ca. 98% Li2CO3 powder was obtained by this 

process. Lithium, an alkali metal abundantly present in 

sea water, was also recovered by ED using liquid 

membranes [41-43, 168]. This modified ED involves the 

using of ionic-liquid-impregnated organic membrane 

(IL-i-OM) through which only the Li ions in seawater 

can permeate through.  

There are several other ED based separation 

processes to recover environment pollutants but useful 

metals from wasters, such as the isolation and 

reclamation of Cu(II) [169-173], Pb(II) [174-176], Zn 

[177], Mn [57, 178], Na, K-Salt [14, 23, 37, 39, 44, 179], 

Au (III) [56], dyes and mineral salts [180], etc. They will 

not be discussed in detail here due to the page limits.  

4. SUMMARY AND PERSPECTIVE 

This contribution summarizes up-to-date synthetic 

tactics for the preparation of ion-exchange materials 

and their applications for electrodialysis related 

processes from the literature. We feel that most of the 

upcoming progresses in the area will come from those 

developers or users that will look at these technologies 

as tools to cope with their specific treatment 

requirements. But it should be given emphasis that 

preparation of ion exchange membranes or materials is 

the most crucial. IEMs with high performance are 

important polymeric materials and used in ED for 

different applications. The main driving force for the 

development of new IEMs with improved properties is 

to make those applications more effective. 

Actually, the performance of membranes is 

determined by its properties and separation abilities. 

IEMs can be designed and prepared by a number of 

tactics varying from basic polymer reactions to 

innovative nanotechnology via molecular design and 

architectural tailoring of composite materials. 

 

Figure 7: Schematic diagrams and configuration of CED and EEDBM stack for producing lithium hydroxides [19]. Copyright 
(2014), Reprinted with permission from American Chemical Society. 
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Besides the preparation of IEMs, the technical and 

commercial relevance of the IEM-based ED processes 

should also be taken into account. As evaluated by 

Strathmann [181], some of the ED applications can be 

considered as state-of-the-art technology, such as the 

applications using conventional electrodialysis, 

production of pure water using continuous electro-

deionization and some specific applications using 

bipolar membranes, such as production of organic acid 

from the fermentation broth or recovery of HF and 

HNO3 from a waste stream generated by neutralization 

of a steel pickling bath. In some applications, ED 

processes provide higher quality products or are more 

environmentally friendly and will therefore be used in 

spite of some drawback such as operation cost. Also, 

increasing costs of raw materials and environmental 

awareness have expanded the application of ED. 

However, the targeted properties of IEMs have to 

be set up to fulfill the membrane requirements for 

specific applications, and appropriate synthesis routes 

for IEMs towards the goals should be specified 

accordingly. Besides the material development, the ED 

system design and their operation optimization should 

also be further developed. In the ED based application 

of the IEMs, new systems to bring down the energy 

consumption and production cost require more 

progress. 
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