3,701 research outputs found
Compact, Efficient, and Wideband Near-Field Resonant Parasitic Filtennas
As a hybrid component in RF front-end systems, filtennas possess the distinctive advantages of simultaneously combining filtering and radiating performance characteristics. Consequently, filtennas not only save space and costs but also reduce transmission losses. In this chapter, three sorts of filtennas have been proposed: the first sort is band-pass/band-stop filtennas, which are mainly realized by assembling band-pass/band-stop filters and antennas to achieve the combined functions; the second sort is multi-resonator-cascaded filtennas, which are obtained by altering the coupled-resonators in the last stage of the filters to act as the radiating elements; and the third sort is near-field resonant parasitic, bandwidth-enhanced filtennas, which are accomplished through organically combining radiator and filtering structures. For the second and third sorts, it is worth noting that the design methods witness significant electrical size reduction without degrading the radiation performance of the filtennas in general
Progressive amorphization of GeSbTe phase-change material under electron beam irradiation
Fast and reversible phase transitions in chalcogenide phase-change materials
(PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental
interests, but also make PCMs based random access memory (PRAM) a leading
candidate for non-volatile memory and neuromorphic computing devices. To RESET
the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions firstly
to a liquid state and then to an amorphous state, corresponding to an abrupt
change in electrical resistance. In this work, we demonstrate a progressive
amorphization process in GeSb2Te4 thin films under electron beam irradiation on
transmission electron microscope (TEM). Melting is shown to be completely
absent by the in situ TEM experiments. The progressive amorphization process
resembles closely the cumulative crystallization process that accompanies a
continuous change in electrical resistance. Our work suggests that if
displacement forces can be implemented properly, it should be possible to
emulate symmetric neuronal dynamics by using PCMs
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
We present a new method for synthesizing high-resolution photo-realistic
images from semantic label maps using conditional generative adversarial
networks (conditional GANs). Conditional GANs have enabled a variety of
applications, but the results are often limited to low-resolution and still far
from realistic. In this work, we generate 2048x1024 visually appealing results
with a novel adversarial loss, as well as new multi-scale generator and
discriminator architectures. Furthermore, we extend our framework to
interactive visual manipulation with two additional features. First, we
incorporate object instance segmentation information, which enables object
manipulations such as removing/adding objects and changing the object category.
Second, we propose a method to generate diverse results given the same input,
allowing users to edit the object appearance interactively. Human opinion
studies demonstrate that our method significantly outperforms existing methods,
advancing both the quality and the resolution of deep image synthesis and
editing.Comment: v2: CVPR camera ready, adding more results for edge-to-photo example
A Comparative Study on Spin-Orbit Torque Efficiencies from W/ferromagnetic and W/ferrimagnetic Heterostructures
It has been shown that W in its resistive form possesses the largest
spin-Hall ratio among all heavy transition metals, which makes it a good
candidate for generating efficient dampinglike spin-orbit torque (DL-SOT)
acting upon adjacent ferromagnetic or ferrimagnetic (FM) layer. Here we provide
a systematic study on the spin transport properties of W/FM magnetic
heterostructures with the FM layer being ferromagnetic
CoFeB or ferrimagnetic CoTb with
perpendicular magnetic anisotropy. The DL-SOT efficiency , which is
characterized by a current-induced hysteresis loop shift method, is found to be
correlated to the microstructure of W buffer layer in both
W/CoFeB and W/CoTb systems. Maximum values
of and are achieved when
the W layer is partially amorphous in the W/CoFeB and
W/CoTb heterostructures, respectively. Our results suggest that
the spin Hall effect from resistive phase of W can be utilized to effectively
control both ferromagnetic and ferrimagnetic layers through a DL-SOT mechanism
- …