125 research outputs found

    Pathway analysis for intracellular Porphyromonas gingivalis using a strain ATCC 33277 specific database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Porphyromonas gingivalis </it>is a Gram-negative intracellular pathogen associated with periodontal disease. We have previously reported on whole-cell quantitative proteomic analyses to investigate the differential expression of virulence factors as the organism transitions from an extracellular to intracellular lifestyle. The original results with the invasive strain <it>P. gingivalis </it>ATCC 33277 were obtained using the genome sequence available at the time, strain W83 [GenBank: <ext-link ext-link-id="AE015924" ext-link-type="gen">AE015924</ext-link>]. We present here a re-processed dataset using the recently published genome annotation specific for strain ATCC 33277 [GenBank: <ext-link ext-link-id="AP009380" ext-link-type="gen">AP009380</ext-link>] and an analysis of differential abundance based on metabolic pathways rather than individual proteins.</p> <p>Results</p> <p>Qualitative detection was observed for 1266 proteins using the strain ATCC 33277 annotation for 18 hour internalized <it>P. gingivalis </it>within human gingival epithelial cells and controls exposed to gingival cell culture medium, an improvement of 7% over the W83 annotation. Internalized cells showed increased abundance of proteins in the energy pathway from asparagine/aspartate amino acids to ATP. The pathway producing one short chain fatty acid, propionate, showed increased abundance, while that of another, butyrate, trended towards decreased abundance. The translational machinery, including ribosomal proteins and tRNA synthetases, showed a significant increase in protein relative abundance, as did proteins responsible for transcription.</p> <p>Conclusion</p> <p>Use of the ATCC 33277 specific genome annotation resulted in improved proteome coverage with respect to the number of proteins observed both qualitatively in terms of protein identifications and quantitatively in terms of the number of calculated abundance ratios. Pathway analysis showed a significant increase in overall protein synthetic and transcriptional machinery in the absence of significant growth. These results suggest that the interior of host cells provides a more energy rich environment compared to the extracellular milieu. Shifts in the production of cytotoxic fatty acids by intracellular <it>P. gingivalis </it>may play a role in virulence. Moreover, despite extensive genomic re-arrangements between strains W83 and 33277, there is sufficient sequence similarity at the peptide level for proteomic abundance trends to be largely accurate when using the heterologous strain annotated genome as the reference for database searching.</p

    Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methanogenic Archaea play key metabolic roles in anaerobic ecosystems, where they use H<sub>2 </sub>and other substrates to produce methane. <it>Methanococcus maripaludis </it>is a model for studies of the global response to nutrient limitations.</p> <p>Results</p> <p>We used high-coverage quantitative proteomics to determine the response of <it>M. maripaludis </it>to growth-limiting levels of H<sub>2</sub>, nitrogen, and phosphate. Six to ten percent of the proteome changed significantly with each nutrient limitation. H<sub>2 </sub>limitation increased the abundance of a wide variety of proteins involved in methanogenesis. However, one protein involved in methanogenesis decreased: a low-affinity [Fe] hydrogenase, which may dominate over a higher-affinity mechanism when H<sub>2 </sub>is abundant. Nitrogen limitation increased known nitrogen assimilation proteins. In addition, the increased abundance of molybdate transport proteins suggested they function for nitrogen fixation. An apparent regulon governed by the euryarchaeal nitrogen regulator NrpR is discussed. Phosphate limitation increased the abundance of three different sets of proteins, suggesting that all three function in phosphate transport.</p> <p>Conclusion</p> <p>The global proteomic response of <it>M. maripaludis </it>to each nutrient limitation suggests a wider response than previously appreciated. The results give new insight into the function of several proteins, as well as providing information that should contribute to the formulation of a regulatory network model.</p

    Pressure-Modulated Structural and Magnetic Phase Transitions in Two-Dimensional FeTe: Tetragonal and Hexagonal Polymorphs

    Full text link
    Two-dimensional (2D) Fe-chalcogenides with rich structures, magnetisms and superconductivities are highly desirable to reveal the torturous transition mechanism and explore their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate novel phase transitions between various ordered states and to plot the seductive phase diagram. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions through comparing two distinct symmetries, i.e., tetragonal (t-) and hexagonal (h-) FeTe. We found that 2D t-FeTe presented the pressure-induced transition from antiferromagnetic to ferromagnetic states at ~ 3 GPa, corresponding to the tetragonal collapse of layered structure. Contrarily, ferromagnetic order of 2D h-FeTe was retained up to 15 GPa, evidently confirmed by electrical transport and Raman measurements. Furthermore, the detailed P-T phase diagrams of both 2D t-FeTe and h-FeTe were mapped out with the delicate critical conditions. We believe our results can provide a unique platform to elaborate the extraordinary physical properties of Fe-chalcogenides and further to develop their practical applications.Comment: 22 Pages, 5 Figure
    • …
    corecore