45,745 research outputs found

    Supplementarity is Necessary for Quantum Diagram Reasoning

    Get PDF
    The ZX-calculus is a powerful diagrammatic language for quantum mechanics and quantum information processing. We prove that its \pi/4-fragment is not complete, in other words the ZX-calculus is not complete for the so called "Clifford+T quantum mechanics". The completeness of this fragment was one of the main open problems in categorical quantum mechanics, a programme initiated by Abramsky and Coecke. The ZX-calculus was known to be incomplete for quantum mechanics. On the other hand, its \pi/2-fragment is known to be complete, i.e. the ZX-calculus is complete for the so called "stabilizer quantum mechanics". Deciding whether its \pi/4-fragment is complete is a crucial step in the development of the ZX-calculus since this fragment is approximately universal for quantum mechanics, contrary to the \pi/2-fragment. To establish our incompleteness result, we consider a fairly simple property of quantum states called supplementarity. We show that supplementarity can be derived in the ZX-calculus if and only if the angles involved in this equation are multiples of \pi/2. In particular, the impossibility to derive supplementarity for \pi/4 implies the incompleteness of the ZX-calculus for Clifford+T quantum mechanics. As a consequence, we propose to add the supplementarity to the set of rules of the ZX-calculus. We also show that if a ZX-diagram involves antiphase twins, they can be merged when the ZX-calculus is augmented with the supplementarity rule. Merging antiphase twins makes diagrammatic reasoning much easier and provides a purely graphical meaning to the supplementarity rule.Comment: Generalised proof and graphical interpretation. 16 pages, submitte

    Causal Dynamics of Discrete Surfaces

    Full text link
    We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.Comment: In Proceedings DCM 2013, arXiv:1403.768

    Towards a Minimal Stabilizer ZX-calculus

    Get PDF
    The stabilizer ZX-calculus is a rigorous graphical language for reasoning about quantum mechanics. The language is sound and complete: one can transform a stabilizer ZX-diagram into another one using the graphical rewrite rules if and only if these two diagrams represent the same quantum evolution or quantum state. We previously showed that the stabilizer ZX-calculus can be simplified by reducing the number of rewrite rules, without losing the property of completeness [Backens, Perdrix & Wang, EPTCS 236:1--20, 2017]. Here, we show that most of the remaining rules of the language are indeed necessary. We do however leave as an open question the necessity of two rules. These include, surprisingly, the bialgebra rule, which is an axiomatisation of complementarity, the cornerstone of the ZX-calculus. Furthermore, we show that a weaker ambient category -- a braided autonomous category instead of the usual compact closed category -- is sufficient to recover the meta rule 'only connectivity matters', even without assuming any symmetries of the generators.Comment: 29 pages, minor updates for v
    • …
    corecore