47 research outputs found

    Two-dimensional temperature measurement in a high temperature and high pressure combustor using CT-TDLAS with a wide scanning laser at 1335-1375nm

    Get PDF
    Tunable diode laser absorption spectroscopy (TDLAS) technology is a developing method for temperature and species concentration measurements with the features of non-contact, high precision, high sensitivity, etc. The difficulty of two-dimensional (2D) temperature measurement in actual combustors has not yet been solved because of pressure broadening of absorption spectra, optical accessibility, etc. In this study, the combination of computed tomography (CT) and TDLAS with a wide scanning laser at 1335-1375nm has been applied to a combustor for 2D temperature measurement in high temperature of 300-2000K and high pressure of 0.1-2.5MPa condition. An external cavity type laser diode with wide wavelength range scanning at 1335-1375nm was used to evaluate the broadened H2O absorption spectra due to the high temperature and high pressure effect. The spectroscopic database in high temperature of 300-2000K and high pressure of 0.1-5.0MPa condition has been revised to improve the accuracy for temperature quantitative analysis. CT reconstruction accuracy was also evaluated in different cases, which presented the consistent temperature distribution between CT reconstruction and assumed distributions. The spatial and temporal distributions of temperature in the high temperature and high pressure combustor were measured successfully by CT-TDLAS using the revised spectroscopic database

    Characterization of two immunomodulating homogalacturonan pectins from green tea

    Get PDF
    Two natural homogalacturonan (HG) pectins (MW ca. 20 kDa) were isolated from green tea based on their immunomodulatory activity. The crude tea polysaccharides (TPS1 and TPS2) were obtained from green tea leaves by hot water extraction and followed by 40% and 70% ethanol precipitation, respectively. Two homogenous water soluble polysaccharides (TPS1-2a and TPS1-2b) were obtained from TPS1 after purification with gel permeation, which gave a higher phagocytic effect than TPS2. A combination of composition, methylation and configuration analyses, as well as NMR (nuclear magnetic resonance) spectroscopy revealed that TPS1-2a and TPS1-2b were homogalacturonan (HG) pectins consisting of a backbone of 1,4-linked α-d-galacturonic acid (GalA) residues with 28.4% and 26.1% of carboxyl groups as methyl ester, respectively. The immunological assay results demonstrated that TPS1-2, which consisted mainly of HG pectins, showed phagocytosis-enhancing activity in HL-60 cells

    Homoisoflavonoids are potent glucose transporter 2 (GLUT 2) inhibitors–a potential mechanism for the glucose-lowering properties of Polygonatum odoratum

    Get PDF
    Foods of high carbohydrate content such as sucrose or starch increase postprandial blood glucose concentrations. The glucose absorption system in the intestine comprises two components: sodium-dependent glucose transporter-1 (SGLT1) and glucose transporter 2 (GLUT2). Here five sappanin-type (SAP) homoisoflavonoids were identified as novel potent GLUT2 inhibitors, with three of them isolated from the fibrous roots of Polygonatum odoratum (Mill.) Druce. SAP homoisolflavonoids had a stronger inhibitory effect on 25 mM glucose transport (41.6 ± 2.5, 50.5 ± 7.6, 47.5 ± 1.9, 42.6 ± 2.4, and 45.7 ± 4.1% for EA-1, EA-2, EA-3, MOA, and MOB) than flavonoids (19.3 ± 2.2, 11.5 ± 3.7, 16.4 ± 2.4, 5.3 ± 1.0, 3.7 ± 2.2, and 18.1 ± 2.4% for apigenin, luteolin, quercetin, naringenin, hesperetin, and genistein) and phloretin (28.1 ± 1.6%) at 15 μM. SAP homoisoflavonoids and SGLT1 inhibitors were found to synergistically inhibit the uptake of glucose using an in vitro model comprising Caco-2 cells. This observed new mechanism of the glucose-lowering action of P. odoratum suggests that SAP homoisoflavonoids and their combination with flavonoid monoglucosides show promise as naturally functional ingredients for inclusion in foods and drinks designed to control postprandial glucose levels

    A RG-II type polysaccharide purified from Aconitum coreanum and their anti-inflammatory activity

    Get PDF
    Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation

    Quantification of Paeoniflorin by Fully Validated LC–MS/MS Method: Its Application to Pharmacokinetic Interaction between Paeoniflorin and Verapamil

    No full text
    A rapid, sensitive, and specific LC-MS/MS method was developed and fully validated for the detection of paeoniflorin only in rat plasma, and applied to pharmacokinetic studies, including intravenous, multi-dose oral and combined administrations with verapamil. In this study, tolbutamide was used as the internal standard, and the protein precipitation extraction method, using acetonitrile as the extraction agent, was used for the sample preparation. Subsequently, the supernatant samples were analyzed on a Phenomenex Gemini® NX-C18 column with a flow rate of 1.0 mL/min in a gradient elution procedure. In the extracted rat plasma, the method exhibited high sensitivity (LLOQ of 1.0 ng/mL) upon selecting ammonium adduct ions ([M+NH4]+) as the precursor ions and good linearity over the concentration range of 1.0–2000 ng/mL, with correlation coefficients >0.99. The intra- and inter-batch accuracy RE% values were within ±8.2%, and the precision RSD% values were ≤8.1% and ≤10.0%, respectively. The results show that the method can be successfully applied to quantitate paeoniflorin in biological samples. Additionally, paeoniflorin is subsequently confirmed to be the substrate of the P-gp transporter in vivo and in vitro for the first time, which would be necessary and beneficial to investigate the clinical safety and efficacy of PF with other drugs in the treatment of rheumatoid arthritis

    Dictamnosides F and G — Two novel sesquiterpene diglycosides with α-configuration glucose units from <i>Dictamnus dasycarpus</i>

    No full text
    748-750Two novel sesquiterpene diglycosides named dictamnosides F (1) and G (2) have been isolated from methanol extract of the root bark of Dictamnus dasycarpus. Their structures have been determined on the basis of spectroscopic and chemical analysis. The existence of α-configuration glucose units in their structures is not very common in natural glycosidic components

    Antioxidative Properties of Crude Polysaccharides from &lt;em&gt;Inonotus obliquus&lt;/em&gt;

    Get PDF
    The mushroom &lt;em&gt;Inonotus obliquus&lt;/em&gt;&lt;em&gt; &lt;/em&gt;has been widely used as a folk medicine in Russia, Poland and most of the Baltic countries. In this study, water-soluble and alkali-soluble crude polysaccharides (IOW and IOA) were isolated from &lt;em&gt;I. obliquus&lt;/em&gt;, and the carbohydrate-rich fractions IOW-1 and IOA-1 were obtained respectively after deproteination and depigmentation. Their contents, such as neutral carbohydrate, uronic acid and protein, were measured. Their antioxidant properties against chemicals-induced reactive species (ROS) including 1,1&#039;-Diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide anion radical, as well as their protective effects on H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;-induced PC12 cell death were investigated. Results showed that &lt;em&gt;I. obliquus&lt;/em&gt; polysaccharides can scavenge all ROS tested above in a dose-dependent manner. IOA and its product IOA-1 could rescue PC12 cell viability from 38.6% to 79.8% and 83.0% at a concentration of 20µg/mL. Similarly, IOW and its product IOW-1 at the same dose, can also increase cell viability to 84.9% and 88.6% respectively. The antioxidative activities of water-soluble and alkali-soluble polysaccharide constituents from &lt;em&gt;I. obliquus&lt;/em&gt; might contribute to diverse medicinal and nutritional values of this mushroom

    Chitosan Improves Anti-Biofilm Efficacy of Gentamicin through Facilitating Antibiotic Penetration

    No full text
    Antibiotic overuse is one of the major drivers in the generation of antibiotic resistant “super bugs” that can potentially cause serious effects on health. In this study, we reported that the polycationic polysaccharide, chitosan could improve the efficacy of a given antibiotic (gentamicin) to combat bacterial biofilms, the universal lifestyle of microbes in the world. Short- or long-term treatment with the mixture of chitosan and gentamicin resulted in the dispersal of Listeria monocytogenes (L. monocytogenes) biofilms. In this combination, chitosan with a moderate molecular mass (~13 kDa) and high N-deacetylation degree (~88% DD) elicited an optimal anti-biofilm and bactericidal activity. Mechanistic insights indicated that chitosan facilitated the entry of gentamicin into the architecture of L. monocytogenes biofilms. Finally, we showed that this combination was also effective in the eradication of biofilms built by two other Listeria species, Listeria welshimeri and Listeria innocua. Thus, our findings pointed out that chitosan supplementation might overcome the resistance of Listeria biofilms to gentamicin, which might be helpful in prevention of gentamicin overuse in case of combating Listeria biofilms when this specific antibiotic was recommended

    A Homogeneous Polysaccharide from Fructus Schisandra chinensis (Turz.) Baill Induces Mitochondrial Apoptosis through the Hsp90/AKT Signalling Pathway in HepG2 Cells

    No full text
    According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1), molecular weight (MW) circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against human hepatocellular liver carcinoma (HepG2) cells to investigate the effects of its antitumour activity and molecular mechanisms. Anticancer activity was evaluated using microscopy, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay, Hoechst 33258 staining, acridine orange (AO) staining, flow cytometry (FCM), and cell-cycle analysis. SCP-0-1 inhibited the HepG2 cells’ growth via inducing apoptosis and second gap/mitosis (G2/M) arrest dose-dependently, with a half maximal inhibitory concentration (IC50) value of 479.63 µg/mL. Western blotting of key proteins revealed the apoptotic and autophagic potential of SCP-0-1. Besides, SCP-0-1 upregulated Bcl-2 Associated X Protein (Bax) and downregulated B-cell leukemia/lymphoma 2 (Bcl-2) in the HepG2 cells. The expression of caspase-3, -8, and -9; poly (ADP-ribose) polymerase (PARP); cytochrome c (Cyt C); tumor protein 53 (p53); survivin; sequestosome 1 (p62); microtubule-associated protein 1 light chain-3B (LC3B); mitogen-activated protein kinase p38 (p38); extracellular regulated protein kinases (ERK); c-Jun N-terminal kinase (JNK); protein kinase B (AKT); and heat shock protein 90 (Hsp90) were evaluated using Western blotting. Our findings demonstrate a novel mechanism through which SCP-0-1 exerts its antiproliferative activity and induces mitochondrial apoptosis rather than autophagy. The induction of mitochondrial apoptosis was attributed to the inhibition of the Hsp90/AKT signalling pathway in an extracellular signal-regulated kinase-independent manner. The results also provide initial evidence on a molecular basis that SCP-0-1 can be used as an anti-hepatocellular carcinoma therapeutic agent in the future
    corecore