10,820 research outputs found

    Locate QCD Critical End Point in a Continuum Model Study

    Get PDF
    With a modified chemical potential dependent effective model for the gluon propagator, we try to locate the critical end point (CEP) of strongly interacting matter in the framework of Dyson-Schwinger equations (DSE). Beyond the chiral limit, we find that Nambu solution and Wigner solution could coexist in some area. Using the CornwallJackiw-Tomboulis (CJT) effective action, we show that these two phases are connected by a first order phase transition. We then locate CEP as the end point of the first order phase transition line. Meanwhile, based on CJT effective action, we give a direct calculation for the chiral susceptibility and thereby study the crossover.Comment: 9 pages, 7 figures; Version published in JHE

    Aggregate Analytic Window Query over Spatial Data

    Full text link
    Analytic window query is a commonly used query in the relational databases. It answers the aggregations of data over a sliding window. For example, to get the average prices of a stock for each day. However, it is not supported in the spatial databases. Because the spatial data are not in a one-dimension space, there is no straightforward way to extend the original analytic window query to spatial databases. But these queries are useful and meaningful. For example, to find the average number of visits for all the POIs in the circle with a fixed radius for each POI as the centre. In this paper, we define the aggregate analytic window query over spatial data and propose algorithms for grid index and tree-index. We also analyze the complexity of the algorithms to prove they are efficient and practical

    The Wigner Solution and QCD Phase Transitions in a Modified PNJL Model

    Get PDF
    By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then try to explore its influences on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters

    Semileptonic Decays of BcB_c Meson to a P-Wave Charmonium State χc\chi_c or hch_c

    Full text link
    The semileptonic decays of meson BcB_c to a P-wave charmonium state χc(3PJ)\chi_c(^3P_J) or hc(1P1)h_c(^1P_1) are computed. The results show that the decays are sizable so they are accessible in Tevatron and in LHC, especially, with the detectors LHCB and BTeV in the foreseeable future, and of them, the one to the 1P1^1P_1 charmonium state potentially offers us a novel window to see the unconfirmed hch_c particle. In addition, it is pointed out that since the two charmonium radiative decays χc(3P1,2)→J/ψ+γ\chi_c(^3P_{1,2}) \to J/\psi+\gamma have sizable branching ratios, the cascade decays of the concerned decays and the charmonium radiative decays may affect the result of the observing the BcB_c meson through the semileptonic decays Bc→J/ψ+l+νlB_{c}\to {J/\psi}+{l}+\nu_{l} substantially.Comment: 8 pages, 2 figure

    Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO with Low-Precision ADCs

    Get PDF
    This paper considers a multiple-input multiple-output (MIMO) receiver with very low-precision analog-to-digital convertors (ADCs) with the goal of developing massive MIMO antenna systems that require minimal cost and power. Previous studies demonstrated that the training duration should be {\em relatively long} to obtain acceptable channel state information. To address this requirement, we adopt a joint channel-and-data (JCD) estimation method based on Bayes-optimal inference. This method yields minimal mean square errors with respect to the channels and payload data. We develop a Bayes-optimal JCD estimator using a recent technique based on approximate message passing. We then present an analytical framework to study the theoretical performance of the estimator in the large-system limit. Simulation results confirm our analytical results, which allow the efficient evaluation of the performance of quantized massive MIMO systems and provide insights into effective system design.Comment: accepted in IEEE Transactions on Signal Processin
    • …
    corecore