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1 Introduction

Quantum chromodynamics (QCD) has two important features, namely, dynamical chiral

symmetry breaking (DχSB) and color confinement. It is generally believed that with

increasing temperature or baryon number density strongly interacting matter will undergo

a phase transition from the hadronic matter to the quark-gluon plasma (QGP) which

is expected to appear in the ultrarelativistic heavy ion collisions. These two phases are

generally referred to as the Nambu-Goldstone phase and the Wigner phase concerning its

realization of chiral symmetry. A central goal of the worldwide program in relativistic heavy

ion collisions is to chart the phase diagram of QCD in the plane of nonzero temperature (T )

and chemical potential (µ) and to locate the position of the critical end point (CEP) [1–3].

In the Nambu-Goldstone phase the quarks are confined and chiral symmetry is dy-

namically broken which leads to a large dynamical quark mass. In the Wigner phase which

is thought to be connected with QGP, chiral symmetry is partially restored and quarks are

not confined. Theoretically, these two phases are described by two different solutions, the

Nambu-Goldstone solution and the Wigner solution of the dressed quark propagator. The

existence and properties of these two solutions in the chiral limit (i.e., the current quark

mass m = 0) have been widely investigated in the framework of Dyson-Schwinger equations

(DSE) approach of QCD. For example, in ref. [4] the authors studied this problem by tak-

ing the infrared part of the gluon propagator in the Maris-Tandy model [5] and inputting

it directly into DSE at finite temperature and chemical potential. It is found that in the

chiral limit there is an area on the T −µ plane on which both the Nambu and Wigner solu-

tions coexist. However, there remain two questions. Firstly, in the real world, the current

quark masses (m) for the u and d quarks are small but nonzero. Actually, many studies

have shown that the absence of current quark mass would exhibits a second order phase

transition instead of a crossover in certain areas of QCD phase diagram, which results in

giving a tri-critical end point(TEP) instead of a CEP [6, 7]. Here, to be closer to the real
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world, we would take m = 5 MeV. Secondly, in earlier work employing the Maris-Tandy

model one simply ignores the µ-dependence of the gluon propagator. However, when µ is

large, the influence of µ to the gluon propagator should be important. Recently, authors of

refs. [8–11] have noticed this problem and modified the gluon propagator. They have added

terms in their own way to suppress the influence of the gluon propagator at large µ. It is

reasonable since it characterizes the weakening of interaction between quarks as µ goes up.

Using such a modified gluon propagator, the authors of ref. [12] have found multi-solution

of the quark gap equation at T = 0 and µ 6= 0 beyond the chiral limit (Similarly, the

authors of refs. [13–15] studied the multi-solutions of the quark gap equation with nonzero

current quark mass in the case of finite temperature and chemical potential by introducing

some modification to the normal Nambu-Jona-Lasinio model). The main purpose of this

paper is to generalize the study in ref. [12] to the case of nonzero T and µ and thereby

locate the position of CEP by means of DSE.

In this work, we only consider two degenerate light flavors u and d, and hence µ =

µu = µd ≈ 1
3µB throughout this paper.

2 Gap equation and its solutions

In Euclidean space and under rainbow-ladder approximation,the quark gap equation at

finite T and µ reads

G−1(~p, ω̃n) = G−10 (~p, ω̃n) +
4

3
T

∞∑
l=−∞

∫
d3q

(2π)3
g2Dµν(~p−~q, ω̃n−ω̃l)γµG(~q, ω̃l)γν , (2.1)

where ω̃n=(2n+ 1)πT + iµ.

Here we have put the regularization mass scale at infinity so that all renormalization

constants are 1. This is allowed since the model used by us renders all the integrations

convergent. Here we note that G−1(~p, ω̃n) also depends on T and µ. It can be expressed

as [12, 16]:

G−1(~p, ω̃n;T, µ) = i~γ · ~pA(~p 2, ω̃2
n;T, µ) + iγ4ω̃nC(~p 2, ω̃2

n;T, µ) +B(~p 2, ω̃2
n;T, µ). (2.2)

Substituting eq. (2.2) into eq. (2.1), one obtains the coupled integral equations for

complex scalar functions A, B and C. Here we need to specify the form of the model gluon

propagator g2Dµν(Q) with Q = (~p−~q, ω̃n− ω̃l). In this work we adopt the model gluon

propagator proposed in [8, 12]

g2Dµν(Q;T, µ) =
4π2

ω6
D0e

−(Q2+αµ2)/ω2
(Q2δµν −QµQν). (2.3)

This model is based on the Maris-Tandy model, which is successful in describing the proper-

ties of mesons when used with the rainbow-ladder approximation, especially for the ground

state pseudo-scalar and vector mesons [5, 17]. The form of this model entails that we are

working in the Landau gauge, which is a fixed point of the renormalisation group. It

has been used widely by Dyson-Schwinger equation studies both in hadron physics and
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Figure 1. Left: Real part of B(0, 0) on the T−µ plane. Right: Top view of the left figure.

finite-temperature QCD [16]. The parameters D0 and ω can be fixed by the masses and

electro-weak decay constants of the pions and ρ mesons. However, it was found that for

ω between [0.3, 0.5] GeV, D0 which satisfies ωD0 = (0.8GeV)3 gave almost the same re-

sults [18]. Later in this paper, we will fix ω further.

The inclusion of e−αµ
2/ω2

does not affect the result at µ = 0. The parameter α charac-

terizes the weakening of interaction between quarks with increasing µ. In the perturbative

calculations of finite-temperature QCD, the running coupling constant decreases with µ.

So we could expect a decrease in the coupling in the nonperturbative region. Thus α con-

trols the rate of decrease. In this paper, we employ this form of suppression to investigate

the CEP.

To locate the CEP, we mainly investigate the phase transition near the CEP. This

brings convenience in numerical computation: when T > 120MeV , we only need to calcu-

late a few Matsubara frequencies. Here, we take 40 Matsubara frequencies into considera-

tion and obtain stable results. The parameters are chosen as ω = 0.45 and α = 0.6, which

will be explained later. The solutions are plotted in figure 1.

From the behavior of the B function, it can be seen that partial restoration of chiral

symmetry takes place in two ways. At large T , when µ goes up, the Nambu phase solution

goes smoothly into Wigner phase, whereas at small T , two solutions could coexist at the

same µ. We will investigate thermodynamic quantities with these two solutions in the

next section.

3 Critical end point

In this section, we will draw the QCD phase diagram corresponding to figure 1. We use the

existence of zero pressure difference between the two phases as the criterion for first order

phase transition. CEP is located as the end point of the first order phase transition line.

Later, we will show the results of chiral susceptibility as a supplement. Quark condensate

is also studied.
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3.1 CJT effective action and first order phase transition

Cornwall-Jackiw-Tomboulis effective action [19] has been used at finite temperature and

density to calculate the partition function [16, 20]. Here, we would like to emphasize that it

requires that the gluon propagator should not depend on the quark propagator explicitly.

Since we are using the rainbow-ladder truncation and a model for the gluon propagator, the

CJT effective action is valid here. Actually, in this case the solution of the gap equation

is the stationary point for the CJT effective action [21]. So our calculation of the gap

equation and the pressure are consistent with each other in this framework. The pressure

difference between the two phases is

∆P(T, µ) = PN (T, µ)− PW (T, µ), (3.1)

where the subscript N and W stand for Nambu and Wigner, respectively. Using the CJT

effective action, we have

PN (T, µ) =
T

V
LnZ(µ) =

T

V
Tr

[
Ln(G−1N G0)−

1

2
(1−G−10 GN )

]
, (3.2)

where the trace operation is over color, flavor, Dirac and coordinate indices all through

this paper. By Fourier transformation, we can rewrite eq. (3.2) in the momentum space

along with PW (T, µ) . Then eq. (3.1) becomes

∆P(T, µ) = 2NcNfT

∞∑
n=−∞

∫
d3p

(2π)3

(
Ln

A2
N~p

2 + C2
N ω̃

2
n +B2

N

A2
W ~p

2 + C2
W ω̃

2
n +B2

W

+
AN~p

2 + CN ω̃
2
n +BNm

A2
N~p

2 + C2
N ω̃

2
n +B2

N

− AW ~p
2 + CW ω̃

2
n +BWm

A2
W ~p

2 + C2
W ω̃

2
n +B2

W

)
. (3.3)

The first order phase transition takes place when ∆P(T, µ) = 0. The evolution of ∆P(T, µ)

with fixed T and increasing µ is plotted in figure 2. Picking out all the points (T, µ) in the

T −µ plane where ∆P = 0, we can find the first order phase transition line, which is shown

in figure 3. As we can see, in this case CEP is located at (TE , µE) = (0.127 GeV, 0.135 GeV).

Here we would like to point out, as can be seen from figure 2, while the area for the

existence of multi-solution gets narrower with increasing T , there is always one point where

∆P(µ) = 0. The area finally vanishes at the CEP. This fact justifies our use of the criterion

for locating CEP due to its consistency with the general phase diagram.

3.2 Chiral susceptibility and crossover

When the chemical potential is lowered to less than µE , heating the system would make the

Nambu solution change continuously into Wigner solution. In this case, we can use various

kinds of susceptibility to characterize what is happening here. One kind of susceptibility,

i.e., the chiral susceptibility, is often used in lattice QCD [3], Nambu-Jona-Lasinio(NJL)

model [22, 23], Dyson-Schwinger equation [24, 25] and other approaches.

Once the CJT effective action is known, one can in principle derive any thermodynam-

ical quantity from it. In this paper, we will use the CJT effective action to derive directly
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the chiral condensate and the corresponding chiral susceptibility. The chiral condensate is

considered to be the order parameter for the chiral phase transition, which is defined as:

〈ψ̄ψ〉 = −T
V

∂

∂m
LnZ, (3.4)

where 〈ψ̄ψ〉 = 〈ψ̄ψ〉u + 〈ψ̄ψ〉d. Substituting eq. (3.2) into eq. (3.4), and using ∂
∂α (detX) =

detX · Tr(X−1 ∂X∂α ), we obtain

〈ψ̄ψ〉 =
T

V
Tr

[(
G− 1

2
GG−10 G

)
· ∂
∂m

(G−1) +
1

2
G−G0

]
. (3.5)

It should be noted that this is a direct definition and works both in the chiral limit and

beyond the chiral limit, so we can calculate the quark condensate in our case (m = 5 MeV)

directly. Now it is interesting to compare this definition with the generally used one

〈ψ̄ψ〉 =
T

V
Tr [G−G0]. (3.6)

Here, in order to eliminate the ultraviolet divergence, one has subtracted a term G0 by hand

(see for example, ref. [26]), whereas in eq. (3.4) the chiral condensate has been obtained

directly from the CJT effective action, where this subtraction term appears automatically.

Actually, since we have obtained the effective action in eq. (3.2), it is easier to take

the partial derivative directly. Note that the effective action alone is divergent. What is

convergent is the difference of two properly chosen effective actions. For our purpose here,

we choose two effective actions with two very close current quark masses m and m′. The

calculation of eq. (3.4) is then straightforward. The result is shown in figure 5. As we

can see, when µ < µE the quark condensate decreases continuously as T goes up. This

can be compared with the case µ > µE (e.g., 150 MeV) where the quark condensate drops

discontinuously at some point. So, a first order phase transition can be expected here.

The chiral susceptibility can be treated similarly. It is defined as

χm =
T

V

∂2

∂m2
LnZ = − ∂

∂m
〈ψ̄ψ〉 (3.7)

– 5 –
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Taking the second order partial derivative of the CJT effective action, we can obtain

figure 5. It can be seen that when µ < µE , the chiral susceptibility undergoes a smooth

change with increasing T . This is where crossover takes place. When approaching the

CEP, the curve gets sharper. The peak tends to go to infinity near the CEP, which is a

second order phase transition point. We pick out the coordinates of the maximums and

obtain the dashed line in figure 3.

3.3 Conclusions

Taking m = 5 MeV, we are left with two independent parameters: ω from the Maris-

Tandy model and α which controls the decrease of coupling with respect to increase of

µ. Note that α does not affect the results when µ = 0. Lattice QCD has given many

results in this case [28, 30–32]. To locate the CEP in our work, we adopt the recent lattice

result Tc '157 MeV [32]. As can be seen from figure 6, in our case ω = 0.45 reproduces

Tc ' 160 MeV. Here we need to point out that we should be careful when fixing the ω.

Looking back at eq. (2.3), one should notice there is a factor D0/ω describing the magnitude

of the coupling strength. So there is actually a seventh power of ω in the denominator.

When treating hadron physics, which corresponds to zero temperature, DχSB is easily

achieved and research has focused on hadron properties. However, when it comes to QCD

phase diagram study, the strength of coupling becomes important, because we know only

a strong enough coupling could cause DχSB. So the value of ω should guarantee that Tc is

centered in recent lattice results. After fixing ω, we try to find the appropriate value for

α. At zero temperature, when µ goes up to 1/3 of baryon mass, nuclear matter turns up

and quark number density becomes nonzero [29]. It is generally believed that the chiral

phase transition point must be larger than 1/3 of baryon mass. Here, we refer to the µc at

zero temperature given by various studies [1, 34, 35] and spread the results over a possible

region, in our case, from about 0.340 GeV to 0.370 GeV. The values of α and the relevant

µc can be seen from figure 7.

Table 1 shows our results for different values of α. At first sight it is surprising that

µE goes up as α increases. This is quite different from the case of µc. However, if one takes
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α 0.5 0.6 0.7

µc /GeV 0.367 0.354 0.342

(TE , µE) /GeV (0.129,0.130) (0.127,0.135) (0.124,0.141)

Table 1. Results for different α

a closer look, one will find a decrease in TE , which actually compensates for the increase of

µE . Hence, the total effect is that increasing α would make the CEP rotate clockwise. In

general, our result shows CEP is located at the lower boundary of the crossover band given

by ref. [32]. This is like other model studies that give a relatively low TE/Tc value [6]. Note

that the fourth column in table 1 gives a (TE , µE)/Tc around (0.78,0.88). it is close to that of

Polyakov-quark-meson model which has a (TE , µE)/Tc around (0.81,0.91) [33]. Considering

we only used Maris-Tandy model here, it could be interesting to see what different gluon

propagator models would exhibit within Dyson-Shwinger equations approach.

4 Summary

In this paper we generalize the study in ref. [12] to investigate the QCD phase diagram

at finite temperature and density. The gap equation is solved beyond chiral limit and an

area for the existence of multi-solution is found. We then use CJT effective action which is

consistent with our gap equation to calculate all the thermodynamical quantities. Although

the CJT effective action alone is divergent, we could obtain convergent results for pressure

difference, quark condensate and chiral susceptibility. The first order phase transition and

crossover are both studied, and from this the CEP is identified and located.
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