95 research outputs found

    Correlation between Clinicopathology and Expression of Heat Shock Protein 72 and Glycoprotein 96 in Human Esophageal Squamous Cell Carcinoma

    Get PDF
    Heat shock protein 72 (HSP72) and glycoprotein 96 (gp96) are highly expressed in cancer tissues. Recent studies indicate the possible roles of HSP72 and gp96 in the development and progression of gastrointestinal carcinomas but detailed information is still ambiguous. We investigated the correlation between clinicopathology and expression of HSP72 and gp96 in human esophageal squamous cell carcinoma. The expression of HSP72 and gp96 was studied in 120 human esophageal squamous cell carcinomas with or without metastasis as well as in mucous membrane adjacent to cancers by way of immunohistochemistry. HSP72 immunoreactivities were detected in 112 of 120 primary tumors (93.3%) and in 30 of 120 mucous membranes adjacent to cancers (25.0%). Gp96 detected in esophageal squamous cell carcinoma and inmucous membrane adjacent to cancer was 85.0% and 20.0%, respectively. Both HSP72 and gp96 stained in cytoplasm. HSP72 and gp96 expression in esophageal squamous cell carcinomas withmetastasis was significantly higher than those with nonmetastasis (P < .05). The results indicate that there exists a significant correlation between the expression of HSP72 and gp96 and the progression of esophageal squamous cell carcinomas. HSP72 and gp96 expression were significantly associated with the presence of tumor infiltration, lymph node, and remote metastasis

    Nickel Nitride Particles Supported on 2D Activated Graphene–Black Phosphorus Heterostructure: An Efficient Electrocatalyst for the Oxygen Evolution Reaction

    Full text link
    Hydrogen is regarded as the most promising green clean energy in the 21st century. Developing the highly efficient and low‐cost electrocatalysts for oxygen evolution reaction (OER) is of great concern for the hydrogen industry. In the water electrolyzed reaction, the overpotential and the kinetics are the main hurdles for OER. Therefore, an efficient and durable oxygen evolution reaction electrocatalyst is required. In this study, an activated graphene (AG)–black phosphorus (BP) nanosheets hybrid is fabricated for supporting Ni3N particles (Ni3N/BP‐AG) in the application of OER. The Ni3N particles are combined with the BP‐AG heterostructure via facile mechanical ball milling under argon protection. The synthesized Ni3N/BP‐AG shows excellent catalytic performance toward the OER, demanding the overpotential of 233 mV for a current density of 10 mA cm−2 with a Tafel slope of 42 mV dec−1. The Ni3N/BP‐AG catalysts also show remarkable stability with a retention rate of the current density of about 86.4% after measuring for 10 000 s in potentiostatic mode.A black phosphorus (BP)–activated graphene (AG) heterostructure is designed for supporting nickel nitride (Ni3N) to enhance the performance of oxygen evolution reaction (OER). The Ni3N/BP‐AG exhibits excellent electrocatalytic performance toward OER with low overpotential and small Tafel slope. It also shows remarkable stability with a retention rate of ≈86.4% OER activity after 10 000 s.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152804/1/smll201901530.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152804/2/smll201901530_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152804/3/smll201901530-sup-0001-S1.pd

    Structure and ion-release mechanism of PIB-4-type ATPases.

    Get PDF
    Funder: The memorial foundation of manufacturer Vilhelm Pedersen and wife - and the Aarhus Wilson consortiumFunder: China Scholarship Council; FundRef: http://dx.doi.org/10.13039/501100004543Funder: Carl Tryggers Stiftelse för Vetenskaplig Forskning; FundRef: http://dx.doi.org/10.13039/501100002805; Grant(s): CTS 17:22Funder: Agnes og Poul Friis Fond; FundRef: http://dx.doi.org/10.13039/100009512Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here, we present structures and complementary functional analyses of an archetypal PIB-4-ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turnover of PIB-ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for example drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens
    • 

    corecore