25 research outputs found

    Underwater target detection based on improved YOLOv7

    Full text link
    Underwater target detection is a crucial aspect of ocean exploration. However, conventional underwater target detection methods face several challenges such as inaccurate feature extraction, slow detection speed and lack of robustness in complex underwater environments. To address these limitations, this study proposes an improved YOLOv7 network (YOLOv7-AC) for underwater target detection. The proposed network utilizes an ACmixBlock module to replace the 3x3 convolution block in the E-ELAN structure, and incorporates jump connections and 1x1 convolution architecture between ACmixBlock modules to improve feature extraction and network reasoning speed. Additionally, a ResNet-ACmix module is designed to avoid feature information loss and reduce computation, while a Global Attention Mechanism (GAM) is inserted in the backbone and head parts of the model to improve feature extraction. Furthermore, the K-means++ algorithm is used instead of K-means to obtain anchor boxes and enhance model accuracy. Experimental results show that the improved YOLOv7 network outperforms the original YOLOv7 model and other popular underwater target detection methods. The proposed network achieved a mean average precision (mAP) value of 89.6% and 97.4% on the URPC dataset and Brackish dataset, respectively, and demonstrated a higher frame per second (FPS) compared to the original YOLOv7 model. The source code for this study is publicly available at https://github.com/NZWANG/YOLOV7-AC. In conclusion, the improved YOLOv7 network proposed in this study represents a promising solution for underwater target detection and holds great potential for practical applications in various underwater tasks

    Multi-View Vertebra Localization and Identification from CT Images

    Full text link
    Accurately localizing and identifying vertebrae from CT images is crucial for various clinical applications. However, most existing efforts are performed on 3D with cropping patch operation, suffering from the large computation costs and limited global information. In this paper, we propose a multi-view vertebra localization and identification from CT images, converting the 3D problem into a 2D localization and identification task on different views. Without the limitation of the 3D cropped patch, our method can learn the multi-view global information naturally. Moreover, to better capture the anatomical structure information from different view perspectives, a multi-view contrastive learning strategy is developed to pre-train the backbone. Additionally, we further propose a Sequence Loss to maintain the sequential structure embedded along the vertebrae. Evaluation results demonstrate that, with only two 2D networks, our method can localize and identify vertebrae in CT images accurately, and outperforms the state-of-the-art methods consistently. Our code is available at https://github.com/ShanghaiTech-IMPACT/Multi-View-Vertebra-Localization-and-Identification-from-CT-Images.Comment: MICCAI 202

    CSC-Unet: A Novel Convolutional Sparse Coding Strategy Based Neural Network for Semantic Segmentation

    Full text link
    It is a challenging task to accurately perform semantic segmentation due to the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep learning insufficiently captured the semantic and appearance information of images, which put limit on their generality and robustness for various application scenes. In this paper, we proposed a novel strategy that reformulated the popularly-used convolution operation to multi-layer convolutional sparse coding block to ease the aforementioned deficiency. This strategy can be possibly used to significantly improve the segmentation performance of any semantic segmentation model that involves convolutional operations. To prove the effectiveness of our idea, we chose the widely-used U-Net model for the demonstration purpose, and we designed CSC-Unet model series based on U-Net. Through extensive analysis and experiments, we provided credible evidence showing that the multi-layer convolutional sparse coding block enables semantic segmentation model to converge faster, can extract finer semantic and appearance information of images, and improve the ability to recover spatial detail information. The best CSC-Unet model significantly outperforms the results of the original U-Net on three public datasets with different scenarios, i.e., 87.14% vs. 84.71% on DeepCrack dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs. 48.82% on CamVid dataset, respectively

    Multi-Granularity Whole-Brain Segmentation Based Functional Network Analysis Using Resting-State fMRI

    Get PDF
    In this work, we systematically analyzed the effects of various nodal definitions, as determined by a multi-granularity whole-brain segmentation scheme, upon the topological architecture of the human brain functional network using the resting-state functional magnetic resonance imaging data of 19 healthy, young subjects. A number of functional networks were created with their nodes defined according to two types of anatomical definitions (Type I and Type II) each of which consists of five granularity levels of whole brain segmentations with each level linked through ontology-based, hierarchical, structural relationships. Topological properties were computed for each network and then compared across levels within the same segmentation type as well as between Type I and Type II. Certain network architecture patterns were observed in our study: (1) As the granularity changes, the absolute values of each node's nodal degree and nodal betweenness change accordingly but the relative values within a single network do not change considerably; (2) The average nodal degree is generally affected by the sparsity level of the network whereas the other topological properties are more specifically affected by the nodal definitions; (3) Within the same ontology relationship type, as the granularity decreases, the network becomes more efficient at information propagation; (4) The small-worldness that we observe is an intrinsic property of the brain's resting-state functional network, independent of the ontology type and the granularity level. Furthermore, we validated the aforementioned conclusions and measured the reproducibility of this multi-granularity network analysis pipeline using another dataset of 49 healthy young subjects that had been scanned twice

    The neural correlates of apathy in the context of aging and brain disorders: a meta-analysis of neuroimaging studies

    Get PDF
    IntroductionApathy is a prevalent mood disturbance that occurs in a wide range of populations, including those with normal cognitive aging, mental disorders, neurodegenerative disorders and traumatic brain injuries. Recently, neuroimaging technologies have been employed to elucidate the neural substrates underlying brain disorders accompanying apathy. However, the consistent neural correlates of apathy across normal aging and brain disorders are still unclear.MethodsThis paper first provides a brief review of the neural mechanism of apathy in healthy elderly individuals, those with mental disorders, neurodegenerative disorders, and traumatic brain injuries. Further, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, the structural and functional neuroimaging meta-analysis using activation likelihood estimation method is performed on the apathy group with brain disorders and the healthy elderly, aiming at exploring the neural correlates of apathy.ResultsThe structural neuroimaging meta-analysis showed that gray matter atrophy is associated with apathy in the bilateral precentral gyrus (BA 13/6), bilateral insula (BA 47), bilateral medial frontal gyrus (BA 11), bilateral inferior frontal gyrus, left caudate (putamen) and right anterior cingulate, while the functional neuroimaging meta-analysis suggested that the functional connectivity in putamen and lateral globus pallidus is correlated with apathy.DiscussionThrough the neuroimaging meta-analysis, this study has identified the potential neural locations of apathy in terms of brain structure and function, which may offer valuable pathophysiological insights for developing more effective therapeutic interventions for affected patients

    Brain Functional Plasticity Driven by Career Experience: A Resting-State fMRI Study of the Seafarer

    No full text
    The functional connectome derived from BOLD resting-state functional magnetic resonance imaging data represents meaningful functional organizations and a shift between distinct cognitive states. However, the body of knowledge on how the long-term career experience affects the brain’s functional plasticity is still very limited. In this study, we used a dynamic functional connectome characterization (DBFCC) model with the automatic target generation process K-Means clustering to explore the functional reorganization property of resting brain states, driven by long-term career experience. Taking sailors as an example, DBFCC generated seventeen reproducibly common atomic connectome patterns (ACP) and one reproducibly distinct ACP, i.e., ACP14. The common ACPs indicating the same functional topology of the resting brain state transitions were shared by two control groups, while the distinct ACP, which mainly represented functional plasticity and only existed in the sailors, showed close relationships with the long-term career experience of sailors. More specifically, the distinct ACP14 of the sailors was made up of four specific sub-networks, such as the auditory network, visual network, executive control network, and vestibular function-related network, which were most likely linked to sailing experience, i.e., continuously suffering auditory noise, maintaining balance, locating one’s position in three-dimensional space at sea, obeying orders, etc. Our results demonstrated DBFCC’s effectiveness in revealing the specifically functional alterations modulated by sailing experience and particularly provided the evidence that functional plasticity was beneficial in reorganizing brain’s functional topology, which could be driven by career experience

    A Novel Feature-Map Based ICA Model for Identifying the Individual, Intra/Inter-Group Brain Networks across Multiple fMRI Datasets

    No full text
    Independent component analysis (ICA) has been widely used in functional magnetic resonance imaging (fMRI) data analysis to evaluate functional connectivity of the brain; however, there are still some limitations on ICA simultaneously handling neuroimaging datasets with diverse acquisition parameters, e.g., different repetition time, different scanner, etc. Therefore, it is difficult for the traditional ICA framework to effectively handle ever-increasingly big neuroimaging datasets. In this research, a novel feature-map based ICA framework (FMICA) was proposed to address the aforementioned deficiencies, which aimed at exploring brain functional networks (BFNs) at different scales, e.g., the first level (individual subject level), second level (intragroup level of subjects within a certain dataset) and third level (intergroup level of subjects across different datasets), based only on the feature maps extracted from the fMRI datasets. The FMICA was presented as a hierarchical framework, which effectively made ICA and constrained ICA as a whole to identify the BFNs from the feature maps. The simulated and real experimental results demonstrated that FMICA had the excellent ability to identify the intergroup BFNs and to characterize subject-specific and group-specific difference of BFNs from the independent component feature maps, which sharply reduced the size of fMRI datasets. Compared with traditional ICAs, FMICA as a more generalized framework could efficiently and simultaneously identify the variant BFNs at the subject-specific, intragroup, intragroup-specific and intergroup levels, implying that FMICA was able to handle big neuroimaging datasets in neuroscience research

    A Novel Spatial-Spectra Dynamics-Based Ranking Model for Sorting Time-Varying Functional Networks from Single Subject FMRI Data

    No full text
    Part 7: Fault DiagnosisInternational audienceAccumulating evidence suggests that the brain state has time-varying transitions, potentially implying that the brain functional networks (BFNs) have spatial variability and power-spectra dynamics over time. Recently, ICA-based BFNs tracking models, i.e., SliTICA, real-time ICA, Quasi-GICA, etc., have been gained wide attention. However, how to distinguish the neurobiological BFNs from those representing noise and artifacts is not trivial in tracking process due to the random order of components generated by ICA. In this study, combining with our previous BFNs tracking model, i.e., Quasi-GICA, we proposed a novel spatial-spectra dynamics-based ranking method for sorting time-varying BFNs, called weighted BFNs ranking, which was based on the dynamical properties in both spatial and spectral domains of each BFN. This proposed weighted BFNs ranking model mainly consisted of two steps: first, the dynamic spatial reproducibility (DSR) and dynamic fraction of amplitude low-frequency fluctuations (DFALFF) for each BFN were calculated; then a weighted coefficients-based ranking strategy for merging the DSR and DFALFF of each BFN was proposed, to make the meaningful dynamic BFNs rank ahead. We showed the effective results by this ranking model on the simulated and real data, suggesting that the meaningful dynamical BFNs with both strong properties of DSR and DFALFF across the tracking process were ranked at the top
    corecore