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In this work, we systematically analyzed the effects of various nodal definitions,

as determined by a multi-granularity whole-brain segmentation scheme, upon the

topological architecture of the human brain functional network using the resting-state

functional magnetic resonance imaging data of 19 healthy, young subjects. A number

of functional networks were created with their nodes defined according to two types of

anatomical definitions (Type I and Type II) each of which consists of five granularity levels

of whole brain segmentations with each level linked through ontology-based, hierarchical,

structural relationships. Topological properties were computed for each network and

then compared across levels within the same segmentation type as well as between

Type I and Type II. Certain network architecture patterns were observed in our study:

(1) As the granularity changes, the absolute values of each node’s nodal degree and

nodal betweenness change accordingly but the relative values within a single network

do not change considerably; (2) The average nodal degree is generally affected by

the sparsity level of the network whereas the other topological properties are more

specifically affected by the nodal definitions; (3) Within the same ontology relationship

type, as the granularity decreases, the network becomes more efficient at information

propagation; (4) The small-worldness that we observe is an intrinsic property of the brain’s

resting-state functional network, independent of the ontology type and the granularity

level. Furthermore, we validated the aforementioned conclusions and measured the

reproducibility of this multi-granularity network analysis pipeline using another dataset

of 49 healthy young subjects that had been scanned twice.
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INTRODUCTION

It has been suggested that one may view the human brain as
a complex yet highly efficient network that is composed of
multiple anatomical regions (van den Heuvel and Hulshoff Pol,
2010). The advent of advanced neuroimaging techniques has
enabled active research on such brain networks, largely centered
around three primary types, the structural network analyzed via
the tractography of diffusion tensor imaging (DTI) (Hagmann
et al., 2007), the morphological network analyzed via structural
magnetic resonance imaging (MRI) (He et al., 2007), as well as the
functional network analyzed via electroencephalography (EEG)
(Mantini et al., 2007), magnetoencephalography (MEG) (Stam,
2004), or functional MRI (fMRI) (Achard et al., 2006). Recently,
resting-state fMRI (rs-fMRI) based functional network analysis
has gained a large amount of research attention for its unveiling
of the topological patterns of human brain networks “at rest”
(De Luca et al., 2006; Greicius et al., 2009; van den Heuvel and
Hulshoff Pol, 2010).

In brain network analysis, graph theory is a widely employed
technique that decomposes a network into a set of nodes and
between-node edges. In a brain network, the nodes usually

refer to different anatomical regions. Most rs-fMRI studies have

utilized the 90 cortical regions as defined in the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
to serve as nodes (Salvador et al., 2005; Achard et al., 2006;

Achard and Bullmore, 2007; Liu et al., 2008). In addition to
the AAL atlas, other types of anatomical atlases have also been
developed for functional connectivity analyses (Lancaster et al.,
2000; Maldjian et al., 2003; Faria et al., 2012). The variation
in a brain network’s topological properties (such as small-
worldness), as induced by the variation in nodal definitions, has
been a topic of contemporary research interest. In the work
of Wang and colleagues (Wang et al., 2009), they conducted
a statistical comparison of the topological properties of the
functional networks derived from the AAL atlas and another
atlas that consists of 70 anatomical regions. While observing
robust small-worldness and truncated power-law connectivity
degree distributions in both networks, the study found significant
differences in multiple topological parameters between the two
types of networks. Later, in the work of Zalesky et al. on whole-
brain anatomical networks (Zalesky et al., 2010), a significant
dependence of brain network properties on the nodal scale was
found. Therefore, how the brain is segmented has a great impact
on the topological properties of a brain network.

Recently, Wu et al. (2016b) have created a set of atlases
that have two types of anatomical definitions (Type I and
Type II), each of which consists of five levels of whole brain
segmentations with each level linked through ontology-based
hierarchical structural relationships (Djamanakova et al., 2014).
At the highest ontology level (Level 5), Type I defines seven
classical regions of brain ontology [telencephalon (right and left),
diencephalon (right and left), mesencephalon, metencephalon,
and myelencephalon] and Cerebrospinal fluid (CSF), whereas
Type II defines four structures that are more widely used in
clinical descriptions (hemispheres (right and left), cerebellum,
and brainstem) and CSF (Wu et al., 2016b). Those two types

of hierarchical relationships are useful for addressing different
clinical hypotheses. For different research purposes, selecting the
appropriate type and also the appropriate level of segmentation
is of critical importance, especially in fMRI studies. Such multi-
granularity atlases, when applied to rs-fMRI based brain network
analyses, will thus define 10 types of brain network nodes.
Whether the topological properties of a resting state brain
network will be affected by those 10 types of multi-granularity
nodal definition and how will they be affected are important
questions to explore. For example, some network properties may
be independent of the ontology relationship type and also the
segmentation level, thus suggesting that they are intrinsic brain
characteristics in some sense, and other topological properties
may be “inherited” from previous levels within the same
segmentation type. Examining such factors will greatly further
our understanding of rs-fMRI based brain functional networks.

In rs-fMRI based brain network analyses, the typical
procedure is to segment a whole brain into multiple distinct
anatomical regions based on the structural MRI (e.g., the T1-
weighted image) and then co-register the rs-fMRI time series
and the structural MRI to define the nodes in all rs-fMRI
time series images. The utility of an atlas is its ability to be
warped to a subject and thus transfer the structure labels that
have been predefined in the atlas to the subject space. In other
words, the key is to segment the structural MRIs according
to the pre-selected atlas’s label definitions. This approach of
warping an atlas to a subject is usually referred to as the “single-
atlas based segmentation approach.” In recent years, multi-atlas
based segmentation methods have gained substantial popularity
due to their superior segmentation accuracy (Aljabar et al.,
2009; Lötjönen et al., 2011; Wang and Yushkevich, 2013; Wu
et al., 2014). In a multi-atlas segmentation approach, instead of
using a single atlas, multiple atlases with consistent structural
segmentation labels are prepared, warped to the subject image,
and then the transformed labels are fused to achieve the best
estimation of the structural segmentation for a given subject.
In this paper, we segment the structural MRIs in the latter
fashion and adopt a fully-automated multi-atlas segmentation
pipeline, the diffeomorphic multi-atlas likelihood fusion (MALF)
algorithm (Tang et al., 2013), the accuracy of which has been
validated on a variety of MRI datasets (Tang et al., 2015).

In this work, we systematically analyze the effects of the multi-
granularity, whole-brain segmentation based nodal definitions
on the topological architecture of the human brain functional
network using the rs-fMRI data from two groups of healthy
young subjects. Various topological properties are computed for
each network and then compared across levels within the same
segmentation type and also between the two different types.
Furthermore, we assess the variations across different levels in
terms of the degree and betweenness of each node.

The results that we present in this paper will be three-fold:
(1) quantitative comparisons of seven topological properties,
namely, the average global efficiency, the average local efficiency,
the average nodal degree, the average nodal betweenness,
the average clustering coefficient, the average characteristic
path length, and the small-worldness, across the first three
levels of Type I and Type II; (2) quantitative evaluations of
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two node-specific properties, the nodal degree and the nodal
betweenness, across the first three levels of Type I and Type
II; (3) comparisons between the corresponding levels of Type
I and Type II (e.g., Type I–Level 1 vs. Type II–Level 1) in
terms of the small-worldness behavior. We also analyzed the test-
retest reproducibility of this multi-granularity network analysis
pipeline on a group of 49 healthy young subjects that had been
scanned twice.

MATERIALS AND METHODS

Subjects
For the first dataset, a total of 19 subjects (2 males and 17
females, aged 19–25 years with the mean age being 20.95 years)
participated in this study at the Brain Imaging Center of South
China Normal University. All subjects reported no history of
language disabilities, hearing loss, or neurological disorders.
Informed consent was obtained from all participating subjects
and monetary compensation was allotted for their participation
in the experiment. This experiment does not violate any policy
or protocol stated by the Institutional Review Board of The
First Affiliated Hospital at Sun Yat-sen University of China
in accordance with the Code of Ethics of the World Medical
Association.

For the test-retest reproducibility experiment, a total of 49
subjects (25 males and 24 females, aged 19–30 years with the
mean age being 24.5 years) were involved at Beijing Normal
University. This is the same dataset as that used in another
reproducibility neuroimaging study, where more details can
be found (Lin et al., 2015). All participants completed two
fMRI sessions at an average interval of approximately 6 weeks
(40.94 ± 4.51 days). All participants were right-handed and
had no history of neurological and psychiatric disorders. This
dataset has been released in the Consortium for Reliability
and Reproducibility (CoRR) database (http://fcon_1000.projects.
nitrc.org/indi/CoRR/html/bnu_1.html).

Data Acquisitions
For the first dataset, all of the imaging data were collected on
a Siemens Magnentom 3T Trio Tim MRI scanner (Erlangen,
Germany). A three-dimensional (3D) magnetization-prepared
rapid gradient-echo (MPRAGE) sequence was used for the
structural MRI with a repetition time (TR) of 2.3 s, an echo time
(TE) of 3.24ms, a slice thickness of 1mm, a voxel size of 1×1×1
mm3, a flip angle of 9◦, and a field of view (FOV) of 256×256
mm2. A 2D echo-planar imaging (EPI) pulse sequence was used
for functional images with a TR of 2 s, a TE of 30ms, a slice
thickness of 3.5mm, a voxel size of 1 × 1 × 1 mm3, a flip angle
of 90◦, and a FOV of 224 × 224 mm2. It took 8min to finish
the scanning process with each subject scanned for 240 brain
volumes to form the rs-fMRI time series.

For the test-retest experiment dataset, all data were collected
using a Siemens Magnentom 3T Trio Tim MRI scanner
(Erlangen, Germany) with a 12-channel phased-array head coil
at the Imaging Center for Brain Research, Beijing Normal
University. A sagittal 3DMPRAGE sequence was used for the 3D
structural MRI with a TR of 2.53 s, a TE of 3.39ms, an inversion

time of 1.1 s, a slice thickness of 1.33mm, a flip angle of 7◦, a FOV
of 256 × 256 mm2, and 144 sagittal slices covering the whole
brain. A 2D EPI pulse sequence was used for functional images
with a TR of 2 s, a TE of 30ms, a slice thickness of 3.5mm, a
matrix size of 64 × 64, an in-plane resolution of 3.1 × 3.1 mm2,
a flip angle of 90◦, and a FOV of 200 × 200 mm2. It took about
7min to finish the scanning process with each subject scanned
for 200 brain volumes to form the rs-fMRI time series.

fMRI Data Preprocessing
All fMRI data were preprocessed using the Statistical Parametric
Mapping software (SPM8, http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/). The first 10 volumes of each rs-fMRI time
series were removed to ensure the subject had entered a stable
lying position. After that, the remaining volumes went through
slice timing correction followed by head motion correction.
These two preprocessing steps are designed to reduce temporal
and spatial noise, respectively, in the fMRI data. Finally,
every volume of each subject’s rs-fMRI data was co-registered
to the corresponding T1-weighted structural image. In the
co-registration, rigid transformation was employed.

Multi-Granularity Whole-Brain
Segmentation
Segmentation is the final preprocessing step that is essential
to region of interest (ROI) based whole brain network
analysis. In this study, we employed a validated multi-
atlas segmentation algorithm, MALF (Tang et al., 2013),
for whole brain segmentations, based on the T1-weighted
structural images. Multi-granularity whole-brain segmentations
were obtained as guided by two types of hierarchical ontology
relationships (Type I and Type II) (Wu et al., 2016b).

For each subject, we obtained 10 whole-brain segmentation
results that ranged from the finest level, with 281 structures
defined, to the coarsest level, having only 5 structures. Type
I contains 5 segmentation granularities: 281 structures (Type
I–Level 1), 137 structures (Type I–Level 2), 54 structures
(Type I–Level 3), 19 structures (Type I–Level 4), and 8
structures (Type I–Level 5). Similarly, Type II has another 5
segmentation granularities: 198 structures (Type II–Level 1), 70
structures (Type II–Level 2), 52 structures (Type II–Level 3),
18 structures (Type II–Level 4), and 5 structures (Type II–Level
5). Figure 1 demonstrates the 10-level whole-brain segmentation
results for one representative subject. Further details on these
10 multi-granularity whole-brain segmentations can be found
in the Supplementary Material 1 and a previous work (Wu
et al., 2016b). In addition, we demonstrate the hierarchical
relationship, as described by a structure-relationship table, in
Supplementary Material 2. Please note that in the original multi-
granularity segmentation, there were non-brain regions defined
in Type I–Level 1. In our subsequent network analyses, we have
excluded those non-brain regions, resulting in a total of 276
structures for Type I–Level 1.

Graph Construction
To analyze a brain network using graph theory, we represent it
mathematically with nodes and edges, where the nodes are brain
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FIGURE 1 | Demonstration of the five granularities of whole-brain segmentations for Type I and Type II in one representative subject at one axial slice.

regions defined by the multi-granularity segmentation scheme
and edges encode the functional connectivity (FC) between every
two brain regions. In our work, FC was calculated as the Pearson
correlation coefficient (PCC) between every pair of ROIs in terms
of their average fMRI intensities. For each subject, all its rs-fMRI
images had been co-registered to the structural image, and thus
we were able to obtain the average intensity of each fMRI image
within any ROI as defined by the whole brain segmentations.
For each subject of the first dataset, since there were 230 fMRI
time series, a vector of size 230 was created for each ROI. For
the reproducibility dataset, a vector of size 190 was created for
each ROI. The FC between any pair of ROIs was then quantified
by the PCC computed for the corresponding pair of fMRI signal
vectors.With 10 granularity levels of segmentations being applied
to the 19 subjects’ fMRI data, a total of 10 × 19 = 190 graphs
were constructed in this way. For the reproducibility dataset, a
total of 10× 49× 2= 980 graphs were obtained. The PCCs were
then thresholded to build binary networks with a ‘1’ indicating
the existence of a connection and a “0” indicating the absence
of a connection. The thresholds were chosen to be 0.3, 0.4, 0.5,
0.6, and 0.7, resulting in a total of 950 binary graphs for the
first dataset (19 × 10 × 5 = 950) and a total of 4,900 binary
graphs for the reproducibility dataset (49 × 2 × 10 × 5 =

4900).
Since there are very few structures defined in Type I–Level 4

(19), Type I–Level 5 (8), Type II–Level 4 (18), and Type II–Level 5
(5), the graphs at those corresponding levels are relatively sparse
after binarization. As such, we did not include graphs based

on those four levels in our subsequent graph network analyses
but instead focused on the first three levels of both ontology
relationships. Figure 2 shows the adjacency matrices before and
after thresholding the 10-level whole-brain segmentation based
FC matrices of a representative subject, with the threshold for

binarization chosen to be 0.3. It is worth noting that our binary
graphs do not include self-loops.

Graph Network Analysis
After creating the binary graphs, we computed topological
parameters of interest in three categories: nodal properties, small-
world properties, as well as efficiency properties. Here, we will
detail the network metrics analyzed in this work with a graph
represented as G(N,K) where N denotes the nodes (a total of n
nodes) and K denotes the edges.

Nodal Properties

Nodal Degree
Nodal degree is the most fundamental network metric and many
other topological parameters depend on it. In a graph, the degree
of any node is the number of edges that link directly to it, given
by ki =

∑

j∈N
aij, i ∈ N, where aij is the element at the i-th

row and j-th column of the binary matrix representation of the
unweighted graph. Nodal degree helps identify hub regions in a
network. A node with a high degree is considered to serve much
more important roles than nodes with lower degrees. The average
nodal degree measures the average number of edges linking to a
single node in the network, given by

Knodal =
1
n

∑

i∈N
ki =

1
n(n−1)

∑

i,j∈N
aij.

Nodal Betweenness
Similar to nodal degree, nodal betweenness is another nodal
property that can also be used for defining hub regions in
the network. Nodal betweenness quantifies the importance of
a given node in terms of the communication efficiency of
the network by calculating the number of the shortest routes
between all pairs of nodes that pass through this node, given by
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FIGURE 2 | The connectivity matrices before and after binarization, at a PCC threshold of 0.3, for the average functional network for each of the multi-granularity

levels in both ontology relationships. The color bar represents the PCC values before binarization (as seen in the 1st and the 3rd columns). White spaces denote the

existence of a connection between the corresponding two ROIs after binarization (as seen in the 2nd and the 4th columns).

Bi =
∑

m 6=i6=n∈N

σmn(i)
σmn

, i ∈ N, where σmn is the total number of the

shortest paths between nodes m and n. Among those shortest
paths, σmn(i) denotes the ones that go through node i. Nodal
betweenness measures the importance of a node’s functional
capability in sending signals and passing information along all
the shortest paths in the brain. The average nodal betweenness
measures the centrality of a network and is given by

Bnodal =
1
n

∑

i∈N
Bi.

Small-World Properties

Clustering Coefficient
Each node in a network will be assigned a clustering coefficient to
quantify its local cliquishness. The clustering coefficient is defined
as the number of connections between the direct neighbors of
a node in proportion to the maximum possible connections
between those neighbors, given byCi =

2ti
ki(ki−1)

, where ti
denotes the number of triangles whose vertices include node i
(ti =

1
2

∑

j∈N

∑

h∈N

aijaihajh) and ki denotes the degree for node i. It

measures how tightly connected the immediate neighborhood of
a node is. The mean clustering coefficient of a network measures
the extent of local clustering or cliquishness of the entire network,
given byCp =

1
n

∑

i∈N
Ci.

Characteristic path length
The characteristic path length (or more precisely, the average
characteristic path length) is defined as the average length of
the shortest path between any pair of nodes, given by Lp =

1
n(n−1)

∑

i∈N

∑

j 6=i∈N

dij, where dij denotes the shortest path length

between nodes i and j. Lp is a global measure of the overall
communication efficiency of a network of interest. A shorter path
suggests a higher communication efficiency since information
flows through fewer edges and thus reaches the destination faster.

Small-worldness
Small-worldness is an important notion for characterizing
the organizational principles that govern a remarkable variety
of social, economical, and biological networks (Latora and
Marchiori, 2001). For a network to be considered as possessing
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the small-worldness property, it should satisfy two conditions:

γ =
Cp

Crand
> 1 and λ =

Lp
Lrand

≈ 1, where Cp and Lp are the

mean clustering coefficient and mean characteristic path length
averaged across all nodes in the objective network and Crand and
Lrand are the mean clustering coefficient and mean characteristic
path length of a random network that has the same number
of nodes, edges, and nodal degree distribution as the original
network but with unrelated topological characteristics. Normally,
a random network has a small clustering coefficient and a short
characteristic path because of their stochasticity. Hence a small-
world network can be quantified as having the property that S =
γ

λ
> 1. Small-worldness is an appealing property that describes

the conflicting aspects of a network, the functional segregation
and the functional integration of the network.

Efficiency Properties
Efficiency is a metric for describing a brain network from a
biologically and functionally relevant perspective regarding the
information flow within the brain. The efficiency of a network
can be evaluated both globally and locally.

Global efficiency
The global efficiency measures a network’s ability
to deliver information at a global scale. It is given
byEglob =

1
n(n−1)

∑

i∈N

∑

j 6=i∈N

1
dij
, where dij denotes the shortest path

length between nodes i and j.

Local efficiency
The local efficiency quantifies the same property as global
efficiency but the quantification is performed within
a neighborhood of a node in the network. It is given
byEloc = 1

n

∑

i∈N
Eglob(Gi), where Eglob(Gi) is the global efficiency

of Gi, the sub-graph composed of the direct neighbors of node i.
A summary of the aforementioned seven network metrics is

presented in Table 1.

Statistical Comparisons
In our graph-based network analysis, we first examined the
seven metrics on the average network generated by averaging the
fMRI intensities across all subjects of each of the two datasets at
eachmulti-granularity level, with the binary networks themselves
obtained by thresholding the PCCs at multiple values-−0.3, 0.4,
0.5, 0.6, and 0.7. We then investigated the individual networks
(19 for the first dataset and 49 × 2 = 98 for the second dataset)
at a fixed PCC threshold of 0.3. In each case, we compared first
the network properties among the first three levels within the
same ontology category (e.g., Type I–Level 1 vs. Type I–Level
2 vs. Type I–Level 3) and then the corresponding levels across
ontology categories (e.g., Type I–Level 1 vs. Type II–Level 1). We
employed paired Student’s t-tests to determine the significance
of each group comparison. In the case of more than 2 group
comparisons, a Bonferroni correction was conducted to address
the multiple comparison issue.

For the test-retest reproducibility examination, we analyzed
the network metrics of the two rs-fMRI networks for the same
subject. Two measures were used to quantify the test-retest

TABLE 1 | Description of the seven topological parameters of brain functional

networks of interest analyzed in this study.

Network properties Symbols Descriptions

Nodal properties Knodal The average nodal degree measures the

average number of edges linking to a single

node

Bnodal The average nodal betweenness measures the

centrality of a network

Small-world properties Cp The clustering coefficient of a network

measures the extent of cliquishness within the

network

Lp The characteristic path length measures the

level of overall routing efficiency in the network

S Small-worldness, a combination of the

clustering coefficient and the characteristic

path length, describes the interplay of

segregation and integration in the network

Efficiency Eglob The global efficiency of a network measures the

extent of information propagation through the

whole network

Eloc The local efficiency of a network measures the

efficiency of information propagation within

subnetworks

reliability. For the first measure, we computed the test-retest

difference as
|NM1−NMk2|

0.5(|NM1|+|NM2|)
, where NM1 denotes the network

metric obtained from the first rs-fMRI series and NM2 denotes
the network metric obtained from the second rs-fMRI series of
the same subject. For the second measure, we utilized the intra-
class correlation coefficient (ICC) (Shrout and Fleiss, 1979). The
ICC is defined as ICC = BMS−WMS

BMS+(n−1)WMS
, where BMS is the

between-subject mean square, WMS is the within subject mean
square and n represents the number of repeated observations
per subject. ICC describes how strongly units in the same group
resemble each other.

RESULTS

Average Network Analysis Results
In Figure 3, we show the results for the 19 subjects in terms of
four network metrics (the average global efficiency, the average
local efficiency, the average nodal degree, and the average nodal
betweenness) of the average functional network with nodes
defined by the six types of whole-brain segmentations (Type I–
Level 1, Type I–Level 2, Type I–Level 3, Type II–Level 1, Type
II–Level 2, and Type II–Level 3) at five PCC thresholds (0.3,
0.4, 0.5, 0.6, and 0.7) while the corresponding results for the
remaining three metrics (the average clustering coefficient, the
average characteristic path length, and the small-worldness) are
demonstrated in Figure 4. The corresponding results obtained
from the 49 subjects, for both tests, are presented in Figure A1.
Consistent patterns are observed; within the same ontology type
(Type I or Type II), as the granularity decreases (level 1 to
level 2 to level 3), the values of both efficiency metrics (the
average global efficiency and the average local efficiency) and
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FIGURE 3 | Demonstration of four metrics (the average global efficiency, the average local efficiency, the average nodal degree, and the average nodal betweenness)

computed from the average functional network of the 19-subject dataset at various PCC thresholds and granularity levels of Type I and Type II.

the average clustering coefficient increase whereas those of the
two nodal property metrics (the average nodal degree and the
average nodal betweenness) and the average characteristic path
length decrease. For the same type of whole-brain segmentation,
as the PCC threshold increases, the values of both efficiency
metrics as well as the average nodal degree and the average
clustering coefficient decrease whereas the values of the average
nodal betweenness and the average characteristic path length
increase.

These observations suggest that either a decrease in the
granularity with a fixed PCC threshold or an increase in the
PCC threshold at a specific granularity level will make the
network sparser (less connected, and thus of a smaller average
nodal degree). As the segmentation granularity decreases, the
binary network becomes less central but more efficient in terms
of global, as well as local, information propagation. A coarser
granularity level will also induce a network that is more clustered
and of a higher overall routing efficiency. In contrast, with a
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FIGURE 4 | Demonstration of three metrics (the average clustering coefficient, the average characteristic path length, and the small-worldness) computed from the

average functional network of the 19-subject dataset at various PCC thresholds and granularity levels of Type I and Type II.

fixed granularity, as the PCC threshold increases, the resultant
binary network becomes more central but less efficient globally
and locally as well as having less local clusters and being less
efficient in terms of overall routing.

The small-world behavior is considered to be significant if the
ratio of network localization to network globalization is above
1. In Figure 4 and Figure A2 we observe a small-worldness in
all binary networks, obtained, respectively, from the 19 subjects
and both tests of the 49 subjects, regardless of the granularity
level and the PCC threshold, suggesting the intrinsic nature of
the small-worldness of the resting-state brain functional network,
especially at a more reasonable PCC threshold such as 0.3 or 0.4.

We now turn to our results for the nodal degree and nodal
betweenness of the average network binarized at a specific PCC
threshold of 0.3. As demonstrated in Figure 5 (results for the 19
subjects), brain regions with large nodal degrees at a finer level

will continue to have relatively large nodal degrees when merged
into a bigger ROI at a coarser level. In each panel of that figure,
the blue circles represent the nodal degrees of all brain regions at
Level 1 (Type I or Type II). After identifying the ROIs (nodes)
within the top 5% largest nodal degrees at Level 2 and Level
3, we decomposed them into the corresponding ROIs at Level
1 based on the ontology hierarchical relationships. The red line
indicates the maximum value and the black line labels the mean
value of the nodal degrees of the decomposed ROIs at Level 1.
Clearly, the brain regions with top nodal degrees, to some extent,
are independent of the granularity-related segmentations; brain
regions with large nodal degrees will generally be the same across
multiple granularity levels.

Figure 6 shows the color maps of nodal betweenness for each
ROI defined at each granularity level in both Type I and Type
II at the PCC threshold of 0.3. We found that ROIs centrally
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FIGURE 5 | The degree relationships between level 1 and level 3 (left panel) as well as those between level 1 and level 2 (right panel) in Type I (top panel) and Type II

(bottom panel). In each panel, the blue circles denote the nodal degrees of all nodes defined in level 1, the black line represents the mean nodal degree values

computed across all ROIs belonging to the same, coarser ROI that is in the top 5% of nodal degrees at level 2 (or level 3) while the red line represents the maximum

nodal degree value among those top ROIs.

located within the brain have much higher betweenness than
those on the periphery of all three granularity levels in the two
types of segmentations, indicating that regions in the center of the
brain carry more responsibility for whole brain communication
and that such a property is not specific to any segmentation
scheme. For different ROIs, the nodal betweenness distribution
patterns are similar across different granularity levels as well as
different ontology types in the sense that brain regions with a
large or a small nodal betweenness generally coincide across the
six types of networks as defined by the six types of whole-brain
segmentations.

Individual Network Analysis Results
For the analysis of the subject-based individual networks, we
investigated at a fixed PCC threshold of 0.3. In Figure 7, we
show the values of four network metrics (the average global
efficiency, the average local efficiency, the average nodal degree,
and the average nodal betweenness) on each of the 19 functional
networks for the first dataset as well as the means computed
across those 19 values, with nodes defined by the six types of
whole-brain segmentations (Type I–Level 1, Type I–Level 2,
Type I–Level 3, Type II–Level 1, Type II–Level 2, and Type
II–Level 3). The corresponding results for the 98 networks
from the reproducibility dataset are demonstrated in Figure A3.
Meanwhile, the corresponding results on the other three metrics

(the average clustering coefficient, the average characteristic
path, and the small-worldness) are demonstrated in Figure 8

and Figure A4. The mean and standard deviations of those
seven metrics, computed across all individual networks of the
19 subjects and both tests of the 49 subjects, are tabulated,
respectively in Table 2 and Table A1. Within the same ontology
type, the group differences between any two levels (for example,
Level 1 vs. Level 2), in terms of all network metrics except the
small-worldness, are statistically significant with a p-value less
than 1e−6 in all cases for both datasets. This again supports
our previous conclusion that as the segmentation granularity
decreases, the binary network becomes less connected, less
central, more efficient in information propagation both globally
and locally, more clustered, as well as of a higher overall
routing efficiency, all of which are statistically significant even
after multiple comparison correction. For the small-worldness,
all individual networks have a small-worldness larger than
or approximately equal to 1, indicating a presence of small-
worldness in all networks. We observed p-values larger than
0.04 for the comparisons of every two levels of Type I and p-
values larger than 0.01 for the comparisons of every two levels
of Type II for the 19-subjects dataset. For the reproducibility
dataset, the p-values were, respectively larger than 0.1 and 0.01
for the comparisons of every two levels of Type I and Type
II for both tests. Such results indicate no significant group
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FIGURE 6 | The nodal betweenness of each ROI defined at each of the first three granularity levels in Type I (left panel) and Type II (right panel), as displayed at five

axial slices. Note that the range of the color bar varies from level to level.

differences after Bonferroni correction across different levels
within the same ontology relationship. Comparing the small-
worldness between Type I and Type II, we obtained a p-value
of 0.152, 0.999, 0.999 between the two Level 1 classes, 0.774,
0.999, 0.385 between the two Level 2 classes, and 0.051, 0.676,
0.672 between the two Level 3 classes, for the first dataset and the
two tests in the reproducibility experiment. Therefore, we have
further evidence that small-worldness is unaffected by the multi-
granularity segmentation and is an intrinsic property of healthy
young human brains.

Reproducibility Results
The test-retest reproducibility results at the threshold of
0.3, in terms of both differences and ICC values, for the
seven metrics, are tabulated in Tables 3, 4. Clearly, low test-
retest differences and large ICC values have been obtained,
indicating a strong reproducibility and robustness in our multi-
granularity functional network analysis pipeline. Among all
sevenmetrics, the average nodal betweenness had relatively lower
reproducibility. The corresponding reproducibility results at
other threshold values (namely 0.4, 0.5, 0.6, and 0.7) are listed in
Tables A2–A9. At other threshold values, strong reproducibility
has also been observed.

DISCUSSION

In this study, we investigated the influence of a recently-
developed, multi-granularity, whole-brain segmentation scheme
on the topology of resting-state brain functional networks in
two healthy young populations. A total of six types of functional

networks have been analyzed, with the network nodes defined
according to two ontology segmentation types each of which
includes three hierarchical levels (Djamanakova et al., 2014; Wu
et al., 2016b).

According to our results, the nodal degree and the nodal
centrality on average decreased significantly as the segmentation’s
granularity decreased. However, both the nodal degree and
the nodal betweenness distribution patterns, in terms of their
values on nodes within the same network, are consistent across
different levels. As presented in Figure 5, the brain regions
with the largest nodal degree at one level will also rank
highly among the other two levels in terms of nodal degree.
Similar patterns were also observed for the nodal betweenness
(see Figure 6), and the central-to-peripheral patterns were
consistent across different levels and across ontology types.
These observations are in line with previous findings on the
relationship between nodal scale and the two nodal properties in
anatomical networks (Zalesky et al., 2010). Our results suggest
that as the granularity changes, the absolute values of nodal
degree and nodal betweenness change accordingly but the relative
values within a single network do not change considerably.
Another important conclusion drawn from our observations is
that the average nodal degree is more related to the sparsity
of the network than the granularity whereas the average nodal
betweenness is more affected by the granularity than the general
sense of sparsity. As shown in our analyses of the average
network, the average nodal degree decreased when the network
became sparser, whether it be by a decrease in the granularity
or by an increase in the PCC threshold. However, the average
nodal betweenness decreased when the network became sparser
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FIGURE 7 | Scatter plots of the 19 values for certain network metrics (the average global efficiency, the average local efficiency, the average nodal degree, and the

average nodal betweenness), as well as their mean values, on the first three levels of both types of the 19-subject dataset.
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FIGURE 8 | Scatter plots of the 19 values for individual network metrics, in terms of the average clustering coefficient, the average characteristic path length, and the

small-worldness, as well as their mean values, computed from the first three levels of both Type I and Type II of the 19-subject dataset.

as induced by a granularity decrease but it increased when
the network became sparser due to a PCC threshold increase.
This indicates that the nodal betweenness was more affected

by the nodal definitions than the binarization process. This
conclusion applies to the two efficiency metrics (the average
global efficiency and the average local efficiency), the average

Frontiers in Neuroscience | www.frontiersin.org 12 December 2018 | Volume 12 | Article 942

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Gong et al. Multi-Granularity Whole-Brain Functional Network Analysis

TABLE 2 | The mean and standard deviations of the seven network metrics of interest, for the three granularity levels in Type I and Type II, as computed across the 19

individual networks.

Type I-Level 1 Type I-Level 2 Type I-Level 3

Average global efficiency 0.768 ± 0.081 0.822 ± 0.076 0.881 ± 0.061

Average local efficiency 0.893 ± 0.041 0.916 ± 0.034 0.948 ± 0.022

Average nodal degree 153.911 ± 42.534 88.659 ± 19.696 40.957 ± 6.119

Average nodal betweenness 68.514 ± 24.747 25.134 ± 11.407 6.396 ± 3.697

Average clustering coefficient 0.789 ± 0.080 0.833 ± 0.067 0.899 ± 0.045

Average characteristic path length 1.316 ± 0.139 1.226 ± 0.117 1.140 ± 0.081

Small-worldness 1.027 ± 0.069 1.032 ± 0.076 1.011 ± 0.043

Type II-Level 1 Type II-Level 2 Type II-Level 3

Average global efficiency 0.765 ± 0.077 0.835 ± 0.072 0.868 ± 0.072

Average local efficiency 0.889 ± 0.039 0.925 ± 0.031 0.941 ± 0.031

Average nodal degree 107.303 ± 28.678 46.830 ± 9.309 37.897 ± 6.964

Average nodal betweenness 48.937 ± 16.817 12.037 ± 5.659 7.117 ± 4.161

Average clustering coefficient 0.780 ± 0.079 0.852 ± 0.061 0.883 ± 0.057

Average characteristic path length 1.320 ± 0.135 1.207 ± 0.107 1.160 ± 0.101

Small-worldness 1.030 ± 0.070 1.033 ± 0.067 1.026 ± 0.066

TABLE 3 | The mean and standard deviations of the test-retest differences, in terms of the seven network metrics of interest, for the three granularity levels in Type I and

Type II, as computed across the 49 subjects involved in the reproducibility experiment at a threshold of 0.3.

Type I-Level 1 Type I-Level 2 Type I-Level 3

Average global efficiency 0.011 ± 0.008 0.012 ± 0.008 0.011 ± 0.012

Average local efficiency 0.024 ± 0.017 0.03 ± 0.021 0.026 ± 0.021

Average nodal degree 0.05 ± 0.033 0.06 ± 0.038 0.04 ± 0.028

Average nodal betweenness 0.071 ± 0.063 0.082 ± 0.4 0.049 ± 0.285

Average clustering coefficient 0.019 ± 0.012 0.012 ± 0.009 0.016 ± 0.013

Average characteristic path length 0.027 ± 0.019 0.004 ± 0.014 0.013 ± 0.042

Small-worldness 0.005 ± 0.004 0.012 ± 0.009 0.028 ± 0.023

Type II-Level 1 Type II-Level 2 Type II-Level 3

Average global efficiency 0.009 ± 0.007 0.0683 ± 0.04 0.008 ± 0.01

Average local efficiency 0.02 ± 0.018 0.028 ± 0.021 0.023 ± 0.019

Average nodal degree 0.041 ± 0.036 0.046 ± 0.032 0.037 ± 0.026

Average nodal betweenness 0.082 ± 0.39 0.085 ± 0.39 0.011 ± 0.012

Average clustering coefficient 0.028 ± 0.026 0.012 ± 0.011 0.019 ± 0.012

Average characteristic path length 0.023 ± 0.02 0.009 ± 0.031 0.014 ± 0.043

Small-worldness 0.2 ± 0.147 0.022 ± 0.016 0.038 ± 0.023

characteristic path length, and the average clustering coefficient
as well.

Within the same ontology relationship type, as the granularity
decreased, the network became more efficient at information
propagation, as evaluated by the four efficiency metrics—the
average global efficiency, the average local efficiency, the average
characteristic path length, and the average clustering coefficient.
This observation agrees with our hypothesis that the ROIs will
be better placed to “communicate” after merging multiple small
ROIs into single larger ones. Similar brain network patterns
have been revealed in previous studies (Zalesky et al., 2010). A
dependence of those four network metrics on the whole-brain
segmentation type has also been reported in the work of Wang
and colleagues (Wang et al., 2009).

One of the most important findings emerging from this study
is that the six types of brain functional networks all exhibited
small-worldness and there is no significant group difference
among levels within the same type nor the corresponding levels
across the two types (e.g., Type I–Level 1 vs. Type II–Level 1).
This indicates an intrinsic nature to the small-worldness of brain
functional networks in the healthy young population. Evidence
exists on the small-worldness of brain functional network using
both the AAL atlas (Salvador et al., 2005; Achard et al., 2006)
and another atlas consisting of 70 anatomical regions for nodal
definition (Wang et al., 2009).

The multi-granularity, hierarchical, whole-brain
segmentations have been widely used in a variety of
neuroimaging studies (Djamanakova et al., 2014; Liang
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TABLE 4 | The ICC values of the seven network metrics of interest, for the three

granularity levels in Type I and Type II, as computed across the 49 subjects

involved in the reproducibility experiment at a threshold of 0.3.

Type

I-Level 1

Type

I-Level 2

Type

I-Level 3

Average global efficiency 0.942 0.958 0.81

Average local efficiency 0.945 0.974 0.702

Average nodal degree 0.956 0.975 0.824

Average nodal betweenness 0.73 0.972 0.998

Average clustering coefficient 0.966 0.98 0.815

Average characteristic path length 0.944 0.968 0.745

Small-worldness 0.962 0.943 0.962

Type

II-Level 1

Type

II-Level 2

Type

II-Level 3

Average global efficiency 0.82 0.829 0.823

Average local efficiency 0.869 0.856 0.835

Average nodal degree 0.938 0.812 0.931

Average nodal betweenness 0.813 0.802 0.831

Average clustering coefficient 0.872 0.916 0.997

Average characteristic path length 0.865 0.905 0.913

Small-worldness 0.889 0.956 0.996

et al., 2015; Ma et al., 2015; Wu et al., 2016a,b). However, to
the best of our knowledge, this is the first time that they have
been applied to whole-brain resting-state functional network
analyses using graph theory. This is also the first time that the
topological architecture of the resting-state brain functional
network, which, in this case, was in terms of seven metrics, has
been systematically analyzed with regards to the relationship to
those hierarchical segmentations. Such a quantitative evaluation
of the network properties for brain networks built upon those
multi-granularity segmentations provides valuable resources and
guidance for brain network analyses with new types of nodal
definitions other than the typically used AAL atlas.

Overall, strong test-retest reproducibility of this multi-
granularity network analysis pipeline has been observed from
our experiments. That said, our ICC results varied depending
on the threshold used, the segmentation type and level, as well
as the network metric of interest. We conjecture that using
the correlation coefficient threshold may have also contributed
somehow to the apparent quality of the results.

In this paper, the nodal definitions of each individual
network were determined based on a sophisticated multi-atlas
segmentation algorithm (Tang et al., 2013) instead of the
normally used single-atlas based segmentation methods. This
ensures that the anatomical meaning of each node in the brain
network is more accurate, which will likely reduce the noise
extracted from the fMRI time series and unveil the true brain
network patterns.

An interesting question is as follows, “which ontology type
should I use for my network analysis?” Such a selection should
depend on the research goal to determine which one (Type I or
Type II) is more appropriate. At the lowest ontology level, the
brain parcellation defined in Type I is more classical in brain
ontology, whereas that in Type II is more widely used in clinical
descriptions. For example, the metencephalon defined in Type I

includes pons and cerebellum sharing the same developmental
precursor, whereas the brainstem and cerebellum (each of which
is defined as a single unit in Type II) are often defined as different
entities in brain imaging research.

Within the same ontology relationship type, we may ask,
“which granularity level will best serve a study’s purpose?” This
is a challenging yet interesting question to explore. At a level
of lower granularity, the ROIs will be defined in a coarser
fashion which will increase the imprecision when calculating the
connectivity strength, given that it is computed as the correlation
between the average fMRI intensities within each defined ROI.
The larger the ROI, the less detail and less precision the network
will possess. However, a finer granularity level will decrease
segmentation accuracy (achieving a high segmentation accuracy
at the finest level of image voxel is the most challenging) and
reproducibility (Djamanakova et al., 2014). The middle level,
Level 3, is generally considered to have a good balance between
accuracy and precision (Djamanakova et al., 2014) and has
been shown to possess good disease detection power (Luo and
Tang, 2017). Regarding the utility in brain network analysis,
as observed from our experiments, level selection would not
significantly affect the final clinical conclusions drawn as long
as the segmentation level is consistently applied to all images
involved. With that being said, more substantial analyses need
to be done to explore the most “appropriate” granularity level for
rs-fMRI based brain network analyses.

There are several limitations to this study. (1) The network
binarization process was conducted based on thresholding the
PCCs at specific threshold values. In the individual network
analyses, we empirically selected the threshold to be 0.3. There is
an alternative approach that involves controlling the sparsity and
wiring cost of the network as threshold measurements (Newman,
2003; He et al., 2008; Wang et al., 2009), which we would expect
to be more rigorous than our approach. We will examine the
possibility of using this solution in our future work. (2) In our
analysis of the two node-specific properties, nodal degree and
nodal betweenness, we have only investigated the distribution
patterns and compared across granularity levels qualitatively. It
would be illuminating to evaluate those properties quantitatively
and statistically. (3) In this work, we conducted a standard set
of simple rs-fMRI preprocessing steps using SPM8 (Braun et al.,
2012; Liu et al., 2013; Woo et al., 2014). Recently, more advanced
rs-fMRI denoising techniques, such as band-pass filtering, more
advanced approaches for head motion correction, and scrubbing,
have been proposed (Dipasquale et al., 2017; Parkes et al.,
2018). Appropriate preprocessing is of great importance for fMRI
analyses. And thus, it is critical to test whether the conclusions
drawn from this study will still hold when employing more
advanced preprocessing techniques, a task that we expect will be
one of our future endeavors. (4) Lastly but most importantly, the
multi-granularity whole-brain segmentations have hierarchical
relationships, which in some sense forms a network themselves.
How to effectively integrate the network information from those
multiple levels to jointly analyze the brain functional network is
a scientific question of great importance that may further our
understanding of the architecture of the human brain and also
provide network-based neuro-informatics of critical utility in
disease detection and prediction.
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The focus of this study is foremost to provide a guidance for
researchers who want to use the multi-granularity segmentation
pipeline for rs-fMRI analyses, rather than the typically used AAL
atlas. We believe this work will be a timely and appropriate
addition to the existing literature regarding how to use the
multi-granularity whole-brain segmentations in rs-fMRI studies.
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