101 research outputs found

    Surface Energy-Modulated Inkjet Printing of Semiconductors

    Get PDF
    Small-molecule organic semiconductors and quantum dots stabilized with organic surface ligand are drawing attention in future generation solution-processed devices because of their solubility in miscellaneous solvents. Solvent processing and device performance can be effectively modulated with a surface modification layer on the substrate or via ink formulation. Characterization of surface property, specifically the surface energy of the substrate and the liquid, is essentially informative. Investigation on film growth and assembling behavior as well as process optimization via surface energy modulation is successfully achieved

    Research progress in physiological effects of resistant substances of Urtica dioica L. on animal performance and feed conversion

    Get PDF
    Several members of family Urticaceae are mainly found in the temperate and subtropical zones of the Northern Hemisphere and are important medicinal plants. Among them, Urtica dioica L. (Urticaceae) is an annual or perennial herb that has been used for feeding and medicinal purposes since long time and is the most exploited species of Urticaceae. Recently, it has received attention to be used as animal feed, as its fresh leaves fed to animals in moderate, dried, and other forms. This review details the advantages of U. dioica as an alternative feed in terms of germplasm specificity, nutritional composition, and feed application status. Its roots, stems, leaves, and seeds are rich in active ingredients. It has also been found to have anticancer effects through antioxidant action and promotion of apoptosis of cancer cells. In shady conditions, U. dioica is highly adaptable while under stressful conditions of drought; it also reduces light absorption and ensures carbon assimilation through light energy conversion efficiency. Therefore, it can be added to animal diets as a suitable feed to reduce costs and improve economic efficiency. This paper investigates the feasibility of using U. dioica as a feed and systematically presents the progress of research and exploitation of U. dioica

    Megasphaera elsdenii Lactate Degradation Pattern Shifts in Rumen Acidosis Models

    Get PDF
    Background: Megasphaera elsdenii is an ecologically important rumen bacterium that metabolizes lactate and relieves rumen acidosis (RA) induced by a high-grain-diet. Understanding the regulatory mechanisms of the lactate metabolism of this species in RA conditions might contribute to developing dietary strategies to alleviate RA. Methods: Megasphaera elsdenii was co-cultured with four lactate producers (Streptococcus bovis, Lactobacilli fermentum, Butyrivibrio fibrisolvens, and Selenomonas ruminantium) and a series of substrate starch doses (1, 3, and 9 g/L) were used to induce one normal and two RA models (subacute rumen acidosis, SARA and acute rumen acidosis, ARA) under batch conditions. The associations between bacterial competition and the shift of organic acids' (OA) accumulation patterns in both statics and dynamics manners were investigated in RA models. Furthermore, we examined the effects of substrate lactate concentration and pH on Megasphaera elsdenii's lactate degradation pattern and genes related to the lactate utilizing pathways in the continuous culture. Results and Conclusion: The positive growth of M. elsdenii and B. fibrisolvens caused OA accumulation in the SARA model to shift from lactate to butyrate and resulted in pH recovery. Furthermore, both the quantities of substrate lactate and pH had remarkable effects on M. elsdenii lactate utilization due to the transcriptional regulation of metabolic genes, and the lactate utilization in M. elsdenii was more sensitive to pH changes than to the substrate lactate level. In addition, compared with associations based on statics data, associations discovered from dynamics data showed greater significance and gave additional explanations regarding the relationships between bacterial competition and OA accumulation

    Association between temperament related traits and SNPs in the serotonin and oxytocin systems in Merino sheep

    Get PDF
    ABSTRACT Animal temperament is defined as the consistent behavioral and physiological differences that are seen between individuals in response to the same stressor. Neurotransmitter systems, like serotonin and oxytocin in the central nervous system, underlie variation in behavioral traits in humans and other animals. Variations like single nucleotide polymorphisms (SNPs) in the genes for tryptophan 5-hydroxylase (TPH2), the serotonin transporter (SLC6A4), the serotonin receptor (HTR2A), and the oxytocin receptor (OXTR) are associated with behavioral phenotype in humans. Thus, the objective of this study was to identify SNPs in those genes and to test if those variations are associated with the temperament in Merino sheep. Using ewes from the University of Western Australia temperament flock, that has been selected on emotional reactivity for more than 20 generations, eight SNPs (rs107856757, rs107856818, rs107856856 and rs107857156 in TPH2, rs20917091 in SLC6A4, rs17196799 and rs17193181 in HTR2A, and rs17664565 in OXTR) were found to be distributed differently between calm and nervous sheep. These eight SNPs were then genotyped in 260 sheep from a flock that has never been selected on emotional reactivity, followed by the estimation of the behavioral traits of those 260 sheep using an arena test and an isolation box test. We found that several SNPs in TPH2 (rs107856757, rs107856818, rs107856856 and rs107857156) were in strong linkage disequilibrium, and all were associated with behavioral phenotype in the non-selected sheep. Similarly, rs17196799 in HTR2A was also associated with the behavioral phenotype

    Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide

    Get PDF
    As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 g/mL) and treated with or without arginine (100 g/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1 , IL-6, TNF-, and iNOS. Though the expression of NF-B was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of -casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of -casein and the total casein in bovine mammary epithelial cells

    Nanomaterials-Based Biosensors against <em>Aspergillus</em> and Aspergillosis: Control and Diagnostic Perspectives

    Get PDF
    Aspergillosis is the name given to the spectrum of diseases caused by the genus Aspergillus. Research on aspergillosis has shown a progressive expansion over the past decades, largely due to the rise in the number of immunocompromised individuals who are at risk for the infection. Nanotechnology provides innovative tools in the medicine, diagnosis, and treatment. The unique properties of nanomaterials like small size in the nanoscale have attracted researchers to explore their potential, especially in medical diagnostics. Aptamers, considered as chemical antibody, are short, single-stranded oligonucleotide molecules with high affinity and specificity to interact with target molecules even superior to antibody. Accordingly, development of nanomaterials-based biosensors technology such as immunosensors and aptasensors against Aspergillus and Aspergillosis is of great significance and urgency. In this book chapter, we comprehensively introduce and analyze the recent progress of nanomaterials-based biosensors against Aspergillus and Aspergillosis. In addition, we reveal the challenges and provide our opinion in future opportunities for such sensing platform development. Ultimately, conclusion and future prospects are highlighted and summarized

    Arginine Alters miRNA Expression Involved in Development and Proliferation of Rat Mammary Tissue

    Get PDF
    This study was designed to determine the effects of dietary arginine on development and proliferation in rat mammary tissue through changes in miRNA profiles. Twelve pregnant Wistar rats were allocated randomly to two groups. A basal diet containing arginine or the control diet containing glutamate on an equal nitrogen basis as the arginine supplemented diet were used. The experiment included a pre-experimental period of four days before parturition and an experimental period of 17 days after parturition. Mammary tissue was collected for histology, RNA extraction and high-throughput sequencing analysis. The greater mammary acinar area indicated that arginine supplementation enhanced mammary tissue development (p < 0.01). MicroRNA profiling indicated that seven miRNA (miR-206-3p, miR-133a-5p, miR-133b-3p, miR-1-3p, miR-133a-3p, miR-1b and miR-486) were differentially expressed in response to Arginine when compared with the glutamate-based control group. In silico gene ontology enrichment and KEGG pathway analysis revealed between 240 and 535 putative target genes among the miRNA. Further verification by qPCR revealed concordance with the differential expression from the sequencing results: 17 of 28 target genes were differentially expressed (15 were highly expressed in arginine and 2 in control) and 11 target genes did not have significant difference in expression. In conclusion, our study suggests that arginine may potentially regulate the development of rat mammary glands through regulating miRNAs

    Effects of different dietary ratio of metabolizable glucose and metabolizable protein on growth performance, rumen fermentation, blood biochemical indices and ruminal microbiota of 8 to 10-month-old dairy heifers

    Get PDF
    Objective The aim of this experiment was to evaluate the effects of different dietary ratio of metabolizable glucose (MG) to metabolizable protein (MP) on growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of 8 to 10-month-old heifers. Methods A total of 24 Holstein heifers weighing an average of 282.90 kg (8 month of age) were randomly assigned to four groups of six. The heifers were fed one of four diets of different dietary MG/MP (0.97, 1.07, 1.13, and 1.26). Results The results showed that the ratio of MG/MP affected the growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of heifers. The average daily gain of heifers was enhanced by increasing the ratio of MG/MP (p<0.05). The concentration of blood urea nitrogen, cholesterol, and low density lipoprotein cholesterol as well as the concentration of total volatile fatty acid in the rumen fluid of heifers decreased with the improvement in the ratio of dietary MG/MP (p<0.05). However, the relative amount of Ruminococcus albus and Butyrivibrio fibrisolvens in the rumen of heifers was increased significantly (p<0.05) when the dietary MG/MP increased. At the same time, with the improvement in dietary MG/MP, the amount of Fibrobacter succinogenes increased (p = 0.08). Conclusion A diet with an optimal ratio (1.13) of MG/MP was beneficial for the improvement of growth, rumen fermentation, dietary protein and energy utilization of 8 to 10-month-old dairy heifers in this experiment

    Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells

    Full text link
    [EN] Methionine (Met) and arginine (Arg) regulate casein protein abundance through alterations in activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. A potential role for the circadian clock network on the regulation of protein synthesis, partly via activity of mTORC1, has been highlighted in non-ruminants. The main objective of the study was to determine in ruminant mammary cells alterations in mRNA, protein abundance and phosphorylation status of mTORC1-related upstream targets, circadian clock proteins, and protein kinase AMP-activated catalytic subunit alpha (AMPK) in relation to alpha-s1-casein protein (CSN1S1) abundance in response to greater supply of Met and Arg alone or in combination. Primary bovine mammary epithelial cells (BMEC) were incubated for 12 h in a 2 x 2 arrangement of treatments with control media (ideal profile of amino acids, IPAA), or media supplemented with increased Met (incMet), Arg (incArg), or both (incMet + incArg). Data were analyzed testing the main effects of Met and Arg and their interaction. Among 7 amino acid (AA) transporters known to be mTORC1 targets, increasing supply of Arg downregulated SLC1A5, SLC3A2, SLC7A1, and SLC7A5, while increasing supply of Met upregulated SLC7A1. mRNA abundance of the cytosolic Arg sensor (CASTOR1) was lower when supply of Arg and Met alone increased. p-TSC2 (TSC complex subunit 2) was greater when the Arg supply was increased, while the phosphoralation ratio of p-AKT (AKT serine/threonine kinase 1):total (t) AKT and p-AMPK:tAMPK were lower. In spite of this, the ratio of p-mTOR:tmTOR nearly doubled with incArg but such response did not prevent a decrease in CSN1S1 abundance. The abundance of period circadian regulator 1 (PER1) protein nearly doubled with all treatments, but only incMet + incArg led to greater clock circadian regulator (CLOCK) protein abundance. Overall, data suggest that a greater supply of Met and Arg could influence CSN1S1 synthesis of BMEC through changes in the mTORC1, circadian clock, and AMPK pathways. Identifying mechanistic relationships between intracellular energy, total AA supply, and these pathways in the context of milk protein synthesis in ruminants merits further research.L. Hu was recipient of a 2017 Yangzhou University International Academic Exchange award and a Postgraduate Research & Practice Innovation Program of Jiangsu Province (CX137) to train at University of Illinois. L. Hu and M. Wang were supported by project from Natural Science Foundation of China (31672446). H. Dai and Y. Liang received scholarships from China Scholarship Council (Beijing, China) to undertake PhD training at University of Illinois.Hu, L.; Chen, Y.; Cortes, IM.; Coleman, DN.; Dai, H.; Liang, Y.; Parys, C.... (2020). Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and alpha-s1-casein abundance in bovine mammary epithelial cells. Food & Function. 11(1):883-894. https://doi.org/10.1039/c9fo02379hS883894111Rius, A. G., Appuhamy, J. A. D. R. N., Cyriac, J., Kirovski, D., Becvar, O., Escobar, J., … Hanigan, M. D. (2010). Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. Journal of Dairy Science, 93(7), 3114-3127. doi:10.3168/jds.2009-2743Moshel, Y., Rhoads, R. E., & Barash, I. (2006). Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. Journal of Cellular Biochemistry, 98(3), 685-700. doi:10.1002/jcb.20825Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., … Murphy, L. O. (2009). Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136(3), 521-534. doi:10.1016/j.cell.2008.11.044Appuhamy, J. A. D. R. N., Nayananjalie, W. A., England, E. M., Gerrard, D. E., Akers, R. M., & Hanigan, M. D. (2014). Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells. Journal of Dairy Science, 97(1), 419-429. doi:10.3168/jds.2013-7189HANIGAN, M. D., CROMPTON, L. A., BEQUETTE, B. J., MILLS, J. A. N., & FRANCE, J. (2002). Modelling Mammary Metabolism in the Dairy Cow to Predict Milk Constituent Yield, with Emphasis on Amino Acid Metabolism and Milk Protein Production: Model Evaluation. Journal of Theoretical Biology, 217(3), 311-330. doi:10.1006/jtbi.2002.3037Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2013). Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science, 96(10), 6248-6263. doi:10.3168/jds.2012-5790Weekes, T. L., Luimes, P. H., & Cant, J. P. (2006). Responses to Amino Acid Imbalances and Deficiencies in Lactating Dairy Cows. Journal of Dairy Science, 89(6), 2177-2187. doi:10.3168/jds.s0022-0302(06)72288-3Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., … Yin, Y. (2008). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153-168. doi:10.1007/s00726-008-0210-yMepham, T. B. (1982). Amino Acid Utilization by Lactating Mammary Gland. Journal of Dairy Science, 65(2), 287-298. doi:10.3168/jds.s0022-0302(82)82191-7Haque, M. N., Rulquin, H., Andrade, A., Faverdin, P., Peyraud, J. L., & Lemosquet, S. (2012). Milk protein synthesis in response to the provision of an «ideal» amino acid profile at 2 levels of metabolizable protein supply in dairy cows. Journal of Dairy Science, 95(10), 5876-5887. doi:10.3168/jds.2011-5230H. Rulquin , G.Raggio , H.Lapierre and S.Lemosquet , Energy and Protein Metabolism and Nutrition , Wageningen Academic Publishers , Wageningen , 2007Nan, X., Bu, D., Li, X., Wang, J., Wei, H., Hu, H., … Loor, J. J. (2014). Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells. Physiological Genomics, 46(7), 268-275. doi:10.1152/physiolgenomics.00119.2013Fraser, D. L., Ørskov, E. R., Whitelaw, F. G., & Franklin, M. F. (1991). Limiting amino acids in dairy cows given casein as the sole source of protein. Livestock Production Science, 28(3), 235-252. doi:10.1016/0301-6226(91)90145-gDoepel, L., Pacheco, D., Kennelly, J. J., Hanigan, M. D., López, I. F., & Lapierre, H. (2004). Milk Protein Synthesis as a Function of Amino Acid Supply. Journal of Dairy Science, 87(5), 1279-1297. doi:10.3168/jds.s0022-0302(04)73278-6Haque, M. N., Rulquin, H., & Lemosquet, S. (2013). Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine. Journal of Dairy Science, 96(1), 420-430. doi:10.3168/jds.2012-5610Salama, A. A. K., Duque, M., Wang, L., Shahzad, K., Olivera, M., & Loor, J. J. (2019). Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. Journal of Dairy Science, 102(3), 2469-2480. doi:10.3168/jds.2018-15219Dong, X., Zhou, Z., Saremi, B., Helmbrecht, A., Wang, Z., & Loor, J. J. (2018). Varying the ratio of Lys:Met while maintaining the ratios of Thr:Phe, Lys:Thr, Lys:His, and Lys:Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science, 101(2), 1708-1718. doi:10.3168/jds.2017-13351Deng, L., Jiang, C., Chen, L., Jin, J., Wei, J., Zhao, L., … Wang, P. (2015). The Ubiquitination of RagA GTPase by RNF152 Negatively Regulates mTORC1 Activation. Molecular Cell, 58(5), 804-818. doi:10.1016/j.molcel.2015.03.033Carroll, B., Maetzel, D., Maddocks, O. D., Otten, G., Ratcliff, M., Smith, G. R., … Korolchuk, V. I. (2016). Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. eLife, 5. doi:10.7554/elife.11058Wolfson, R. L., & Sabatini, D. M. (2017). The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metabolism, 26(2), 301-309. doi:10.1016/j.cmet.2017.07.001Wang, S., Tsun, Z.-Y., Wolfson, R. L., Shen, K., Wyant, G. A., Plovanich, M. E., … Sabatini, D. M. (2015). Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 347(6218), 188-194. doi:10.1126/science.1257132Wolfson, R. L., Chantranupong, L., Saxton, R. A., Shen, K., Scaria, S. M., Cantor, J. R., & Sabatini, D. M. (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 351(6268), 43-48. doi:10.1126/science.aab2674Casey, T. M., Crodian, J., Erickson, E., Kuropatwinski, K. K., Gleiberman, A. S., & Antoch, M. P. (2014). Tissue-Specific Changes in Molecular Clocks During the Transition from Pregnancy to Lactation in Mice1. Biology of Reproduction, 90(6). doi:10.1095/biolreprod.113.116137Lamia, K. A., Storch, K.-F., & Weitz, C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proceedings of the National Academy of Sciences, 105(39), 15172-15177. doi:10.1073/pnas.0806717105Cho, H., Zhao, X., Hatori, M., Yu, R. T., Barish, G. D., Lam, M. T., … Evans, R. M. (2012). Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 485(7396), 123-127. doi:10.1038/nature11048Vollmers, C., Schmitz, R. J., Nathanson, J., Yeo, G., Ecker, J. R., & Panda, S. (2012). Circadian Oscillations of Protein-Coding and Regulatory RNAs in a Highly Dynamic Mammalian Liver Epigenome. Cell Metabolism, 16(6), 833-845. doi:10.1016/j.cmet.2012.11.004Cao, R. (2018). mTOR Signaling, Translational Control, and the Circadian Clock. Frontiers in Genetics, 9. doi:10.3389/fgene.2018.00367Ramanathan, C., Kathale, N. D., Liu, D., Lee, C., Freeman, D. A., Hogenesch, J. B., … Liu, A. C. (2018). mTOR signaling regulates central and peripheral circadian clock function. PLOS Genetics, 14(5), e1007369. doi:10.1371/journal.pgen.1007369Salfer, I. J., Dechow, C. D., & Harvatine, K. J. (2019). Annual rhythms of milk and milk fat and protein production in dairy cattle in the United States. Journal of Dairy Science, 102(1), 742-753. doi:10.3168/jds.2018-15040Li, S., Hosseini, A., Danes, M., Jacometo, C., Liu, J., & Loor, J. J. (2016). Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells. Journal of Animal Science and Biotechnology, 7(1). doi:10.1186/s40104-016-0104-xVailati-Riboni, M., Xu, T., Qadir, B., Bucktrout, R., Parys, C., & Loor, J. J. (2019). In vitro methionine supplementation during lipopolysaccharide stimulation modulates immunometabolic gene network expression in isolated polymorphonuclear cells from lactating Holstein cows. Journal of Dairy Science, 102(9), 8343-8351. doi:10.3168/jds.2018-15737Kadegowda, A. K. G., Bionaz, M., Piperova, L. S., Erdman, R. A., & Loor, J. J. (2009). Peroxisome proliferator-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science, 92(9), 4276-4289. doi:10.3168/jds.2008-1932Dong, X., Zhou, Z., Wang, L., Saremi, B., Helmbrecht, A., Wang, Z., & Loor, J. J. (2018). Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science, 101(6), 5502-5514. doi:10.3168/jds.2017-13707Bionaz, M., & Loor, J. J. (2011). Gene Networks Driving Bovine Mammary Protein Synthesis during the Lactation cycle. Bioinformatics and Biology Insights, 5, BBI.S7003. doi:10.4137/bbi.s7003Zhou, Z., Vailati-Riboni, M., Trevisi, E., Drackley, J. K., Luchini, D. N., & Loor, J. J. (2016). Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. Journal of Dairy Science, 99(11), 8716-8732. doi:10.3168/jds.2015-10525National Research Council , Nutrient Requirements of Dairy Cattle , National Academies Press , Washington , 2001Batistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Batistel, F., Arroyo, J. M., Garces, C. I. M., Trevisi, E., Parys, C., Ballou, M. A., … Loor, J. J. (2018). Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 101(1), 480-490. doi:10.3168/jds.2017-13185Zhou, Z., Ferdous, F., Montagner, P., Luchini, D. N., Corrêa, M. N., & Loor, J. J. (2018). Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. Journal of Dairy Science, 101(11), 10374-10382. doi:10.3168/jds.2018-14972Vailati-Riboni, M., Zhou, Z., Jacometo, C. B., Minuti, A., Trevisi, E., Luchini, D. N., & Loor, J. J. (2017). Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. Journal of Dairy Science, 100(5), 3958-3968. doi:10.3168/jds.2016-11812Ma, Y. F., Batistel, F., Xu, T. L., Han, L. Q., Bucktrout, R., Liang, Y., … Loor, J. J. (2019). Phosphorylation of AKT serine/threonine kinase and abundance of milk protein synthesis gene networks in mammary tissue in response to supply of methionine in periparturient Holstein cows. Journal of Dairy Science, 102(5), 4264-4274. doi:10.3168/jds.2018-15451Reynolds, C. K., Harmon, D. L., & Cecava, M. J. (1994). Absorption and Delivery of Nutrients for Milk Protein Synthesis by Portal-Drained Viscera. Journal of Dairy Science, 77(9), 2787-2808. doi:10.3168/jds.s0022-0302(94)77220-9Bequette, B. J., Backwell, F. R. C., & Crompton, L. A. (1998). Current Concepts of Amino Acid and Protein Metabolism in the Mammary Gland of the Lactating Ruminant. Journal of Dairy Science, 81(9), 2540-2559. doi:10.3168/jds.s0022-0302(98)70147-xTaylor, P. M. (2013). Role of amino acid transporters in amino acid sensing. The American Journal of Clinical Nutrition, 99(1), 223S-230S. doi:10.3945/ajcn.113.070086Dai, H., Coleman, D. N., Hu, L., Martinez-Cortés, I., Wang, M., Parys, C., … Loor, J. J. (2020). Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. Journal of Dairy Science, 103(1), 676-689. doi:10.3168/jds.2019-16631Hatzoglou, M., Fernandez, J., Yaman, I., & Closs, E. (2004). REGULATION OF CATIONIC AMINO ACID TRANSPORT: The Story of the CAT-1 Transporter. Annual Review of Nutrition, 24(1), 377-399. doi:10.1146/annurev.nutr.23.011702.073120Fuchs, B. C., & Bode, B. P. (2005). Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Seminars in Cancer Biology, 15(4), 254-266. doi:10.1016/j.semcancer.2005.04.005Zheng, L., Zhang, W., Zhou, Y., Li, F., Wei, H., & Peng, J. (2016). Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1. International Journal of Molecular Sciences, 17(10), 1636. doi:10.3390/ijms17101636Suryawan, A. (2011). Regulation of protein synthesis by amino acids in muscle of neonates. Frontiers in Bioscience, 16(1), 1445. doi:10.2741/3798Averous, J., Lambert-Langlais, S., Mesclon, F., Carraro, V., Parry, L., Jousse, C., … Fafournoux, P. (2016). GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Scientific Reports, 6(1). doi:10.1038/srep27698Xia, J., Wang, R., Zhang, T., & Ding, J. (2016). Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling. Cell Discovery, 2(1). doi:10.1038/celldisc.2016.35Chantranupong, L., Scaria, S. M., Saxton, R. A., Gygi, M. P., Shen, K., Wyant, G. A., … Sabatini, D. M. (2016). The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell, 165(1), 153-164. doi:10.1016/j.cell.2016.02.035Cai, W., Wei, Y., Jarnik, M., Reich, J., & Lilly, M. A. (2016). The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function. PLOS Genetics, 12(5), e1006036. doi:10.1371/journal.pgen.1006036Shen, K., Huang, R. K., Brignole, E. J., Condon, K. J., Valenstein, M. L., Chantranupong, L., … Sabatini, D. M. (2018). Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature, 556(7699), 64-69. doi:10.1038/nature26158Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., & Sabatini, D. M. (2008). The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1. Science, 320(5882), 1496-1501. doi:10.1126/science.1157535Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U., & Sabatini, D. M. (2016). Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature, 536(7615), 229-233. doi:10.1038/nature19079Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., … Guan, K.-L. (2006). TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell, 126(5), 955-968. doi:10.1016/j.cell.2006.06.055Huang, J., & Manning, B. D. (2008). The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochemical Journal, 412(2), 179-190. doi:10.1042/bj20080281Menon, S., Dibble, C. C., Talbott, G., Hoxhaj, G., Valvezan, A. J., Takahashi, H., … Manning, B. D. (2014). Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome. Cell, 156(4), 771-785. doi:10.1016/j.cell.2013.11.049Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J., & Cantley, L. C. (2002). Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway. Molecular Cell, 10(1), 151-162. doi:10.1016/s1097-2765(02)00568-3Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1(1), 15-25. doi:10.1016/j.cmet.2004.12.003Inoki, K., Zhu, T., & Guan, K.-L. (2003). TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 115(5), 577-590. doi:10.1016/s0092-8674(03)00929-2Hindupur, S. K., González, A., & Hall, M. N. (2015). The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control. Cold Spring Harbor Perspectives in Biology, 7(8), a019141. doi:10.1101/cshperspect.a019141Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., & Pandolfi, P. P. (2005). Phosphorylation and Functional Inactivation of TSC2 by Erk. Cell, 121(2), 179-193. doi:10.1016/j.cell.2005.02.031ROLFE, M., McLEOD, L. E., PRATT, P. F., & PROUD, C. G. (2005). Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochemical Journal, 388(3), 973-984. doi:10.1042/bj20041888Yang, J.-X., Wang, C.-H., Xu, Q.-B., Zhao, F.-Q., Liu, J.-X., & Liu, H.-Y. (2015). Methionyl-Methionine Promotes α-s1 Casein Synthesis in Bovine Mammary Gland Explants by Enhancing Intracellular Substrate Availability and Activating JAK2-STAT5 and mTOR-Mediated Signaling Pathways. The Journal of Nutrition, 145(8), 1748-1753. doi:10.3945/jn.114.208330Ko, C. H., & Takahashi, J. S. (2006). Molecular components of the mammalian circadian clock. Human Molecular Genetics, 15(suppl_2), R271-R277. doi:10.1093/hmg/ddl207Yagita, K., Tamanini, F., van der Horst, G. T. J., & Okamura, H. (2001). Molecular Mechanisms of the Biological Clock in Cultured Fibroblasts. Science, 292(5515), 278-281. doi:10.1126/science.1059542Preitner, N., Damiola, F., Luis-Lopez-Molina, Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The Orphan Nuclear Receptor REV-ERBα Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator. Cell, 110(2), 251-260. doi:10.1016/s0092-8674(02)00825-5Reinke, H., & Asher, G. (2019). Crosstalk between metabolism and circadian clocks. Nature Reviews Molecular Cell Biology, 20(4), 227-241. doi:10.1038/s41580-018-0096-9Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., … Schibler, U. (2000). Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling. Science, 289(5488), 2344-2347. doi:10.1126/science.289.5488.2344Lamia, K. A., Sachdeva, U. M., DiTacchio, L., Williams, E. C., Alvarez, J. G., Egan, D. F., … Evans, R. M. (2009). AMPK Regulates the Circadian Clock by Cryptochrome Phosphorylation and Degradation. Science, 326(5951), 437-440. doi:10.1126/science.1172156Zheng, X., & Sehgal, A. (2010). AKT and TOR Signaling Set the Pace of the Circadian Pacemaker. Current Biology, 20(13), 1203-1208. doi:10.1016/j.cub.2010.05.027Ye, R., Selby, C. P., Chiou, Y.-Y., Ozkan-Dagliyan, I., Gaddameedhi, S., & Sancar, A. (2014). Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes & Development, 28(18), 1989-1998. doi:10.1101/gad.249417.114Luciano, A. K., Zhou, W., Santana, J. M., Kyriakides, C., Velazquez, H., & Sessa, W. C. (2018). CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues. Journal of Biological Chemistry, 293(23), 9126-9136. doi:10.1074/jbc.ra117.000773Dang, F., Sun, X., Ma, X., Wu, R., Zhang, D., Chen, Y., … L

    Megasphaera elsdenii Lactate Degradation Pattern Shifts in Rumen Acidosis Models

    Get PDF
    Background:Megasphaera elsdenii is an ecologically important rumen bacterium that metabolizes lactate and relieves rumen acidosis (RA) induced by a high-grain-diet. Understanding the regulatory mechanisms of the lactate metabolism of this species in RA conditions might contribute to developing dietary strategies to alleviate RA.Methods:Megasphaera elsdenii was co-cultured with four lactate producers (Streptococcus bovis, Lactobacilli fermentum, Butyrivibrio fibrisolvens, and Selenomonas ruminantium) and a series of substrate starch doses (1, 3, and 9 g/L) were used to induce one normal and two RA models (subacute rumen acidosis, SARA and acute rumen acidosis, ARA) under batch conditions. The associations between bacterial competition and the shift of organic acids’ (OA) accumulation patterns in both statics and dynamics manners were investigated in RA models. Furthermore, we examined the effects of substrate lactate concentration and pH on Megasphaera elsdenii’s lactate degradation pattern and genes related to the lactate utilizing pathways in the continuous culture.Results and Conclusion: The positive growth of M. elsdenii and B. fibrisolvens caused OA accumulation in the SARA model to shift from lactate to butyrate and resulted in pH recovery. Furthermore, both the quantities of substrate lactate and pH had remarkable effects on M. elsdenii lactate utilization due to the transcriptional regulation of metabolic genes, and the lactate utilization in M. elsdenii was more sensitive to pH changes than to the substrate lactate level. In addition, compared with associations based on statics data, associations discovered from dynamics data showed greater significance and gave additional explanations regarding the relationships between bacterial competition and OA accumulation
    • …
    corecore