9 research outputs found

    Application of Heterogeneous Catalysts in Dechlorination of Chlorophenols

    Get PDF
    Chlorophenols (CPs) is a very important kind of basic organic chemical intermediates such as sanitizers, germicides, insecticides and so on; but CPs also constitutes a particular group of priority pollutants that widely distribute in wastewater and the polluted groundwater. Because of their acute toxicity, persistence and low biodegradability, their emissions have been progressively restricted by strong legal regulations. In this chapter, we focused on methods for degrading of CPs recent years, especially by using new heterogeneous catalytic hydrogenation methods to the dechlorination of CPs. The purpose is to introduce scientific research workers and companies to waste water treatments in order to inspire and further better protect the environment

    Gene expression profile analysis of human hepatocellular carcinoma using SAGE and LongSAGE

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the second cancer killer in China. The initiation and malignant transformation of cancer result from accumulation of genetic changes in the sequences or expression level of cancer-related genes. It is of particular importance to determine gene expression profiles of cancers on a global scale. SAGE and LongSAGE have been developed for this purpose.</p> <p>Methods</p> <p>We performed SAGE in normal liver and HCC samples as well as the liver cancer cell line HepG2. Meanwhile, the same HCC sample was simultaneously analyzed using LongSAGE. Computational analysis was carried out to identify differentially expressed genes between normal liver and HCC which were further validated by real-time quantitative RT-PCR.</p> <p>Results</p> <p>Approximately 50,000 tags were sequenced for each of the four libraries. Analysis of the technical replicates of HCC indicated that excluding the low abundance tags, the reproducibility of SAGE data is high (R = 0.97). Compared with the gene expression profile of normal liver, 224 genes related to biosynthesis, cell proliferation, signal transduction, cellular metabolism and transport were identified to be differentially expressed in HCC. Overexpression of some transcripts selected from SAGE data was validated by real-time quantitative RT-PCR. Interestingly, sarcoglycan-ε (SGCE) and paternally expressed gene (PEG10) which is a pair of close neighboring genes on chromosome 7q21, showed similar enhanced expression patterns in HCC, implicating that a common mechanism of deregulation may be shared by these two genes.</p> <p>Conclusion</p> <p>Our study depicted the expression profile of HCC on a genome-wide scale without the restriction of annotation databases, and provided novel candidate genes that might be related to HCC.</p

    Influence of lipopolysaccharides on autophagy and inflammation in pancreatic islet cells of mice fed by high-fat diet

    No full text
    The aim of this study was to confirm whether chronic low-grade inflammation could induce autophagy and damage in islet cells. The high-fat diet (HF) and low-dose lipopolysaccharides (LPS) were used to simulate chronic inflammation. Islet function was observed, the expression of autophagy-related proteins and the activity of glucose synthase kinase 3β (GSK-3β) were detected, and the role of autophagy in islet injury induced by inflammation was explored. Higher blood glucose was observed in HF group and LPS group compared with control (C) group, and there was no significant difference between LPS group and LiCl group. The apoptotic pancreatic islet cells in the LPS group were higher than in the HF and C groups, and the in the LiCl group they were higher than in the C group and lower than in the LPS group. Compared with the C group, LC3II/I ratio in the HF group was increased ( P  < 0.05), in LPS and LiCl groups it was lower than in the HF group, and in LiCl group it was higher than in the LPS group. There was no significant difference between HF group and C group with regard to the ratio of p-GSK-3β/GSK-3β, but in the LiCl group it was higher than in the LPS group. The results demonstrated that low-grade inflammation might cause autophagy flux impaired through activation of GSK-3β, and induced islet cells damage. LiCl could play a role in protecting islet cells through autophagy enhancement

    Antibody Response of BNT162b2 and CoronaVac Platforms in Recovered Individuals Previously Infected by COVID-19 against SARS-CoV-2 Wild Type and Delta Variant

    No full text
    Vaccinating recovered patients previously infected by COVID-19 with mRNA vaccines to boost their immune response against wild-type viruses (WT), we aimed to investigate whether vaccine platform and time of vaccination affect immunogenicity against the SARS-CoV-2 WT and Delta variant (DV). Convalescent patients infected by COVID-19 were recruited and received one booster dose of the BNT162b2 (PC-B) or CoronaVac (PC-C) vaccines, while SARS-CoV-2 naïve subjects received two doses of the BNT162b2 (CN-B) or CoronaVac (CN-C) vaccines. The neutralizing antibody in sera against the WT and DV was determined with live virus neutralization assay (vMN). The vMN geometric mean titre (GMT) against WT in recovered individuals previously infected by COVID-19 reduced significantly from 60.0 (95% confidence interval (CI), 46.5–77.4) to 33.9 (95% CI, 26.3–43.7) at 6 months post recovery. In the PC-B group, the BNT162b2 vaccine enhanced antibody response against WT and DV, with 22.3-fold and 20.4-fold increases, respectively. The PC-C group also showed 1.8-fold and 2.2-fold increases for WT and DV, respectively, after receiving the CoronaVac vaccine. There was a 10.6-fold increase in GMT in the CN-B group and a 1.3-fold increase in the CN-C group against DV after full vaccination. In both the PC-B and PC-C groups, there was no difference between GMT against WT and DV after vaccination. Subjects in the CN-B and CN-C groups showed inferior GMT against DV compared with GMT against WT after vaccination. In this study, one booster shot effectively enhanced the pre-existing neutralizing activity against WT and DV in recovered subjects

    Antibody Response of Combination of BNT162b2 and CoronaVac Platforms of COVID-19 Vaccines against Omicron Variant

    No full text
    By vaccinating SARS-CoV-2 na&iuml;ve individuals who have already received two doses of COVID-19 vaccines, we aimed to investigate whether a heterologous prime-boost strategy, using vaccines of different platforms as the booster dose, can enhance the immune response against SARS-CoV-2 virus variants. Participants were assigned into four groups, each receiving different combination of vaccinations: two doses of BNT162b2 followed by one dose of BNT162b2 booster (B-B-B); Combination of BNT162b2 (first dose) and CoronaVac (second dose) followed by one dose of BNT162b2 booster (B-C-B); two doses of CoronaVac followed by one dose of CoronaVac booster (C-C-C); two doses of CoronaVac followed by one dose of BNT162b2 booster (C-C-B). The neutralizing antibody in sera against the virus was determined with live virus microneutralization assay (vMN). The B-B-B group and C-C-B group demonstrated significantly higher immunogenicity against SARS-CoV-2 Wild type (WT), Beta variant (BV) and Delta variant (DV). In addition, the B-B-B group and C-C-B group showed reduced but existing protection against Omicron variant (OV). Moreover, A persistent rise in vMN titre against OV was observed 3 days after booster dose. Regarding safety, a heterologous prime-boost vaccine strategy is well tolerated. In this study, it was demonstrated that using vaccines of different platforms as booster dose can enhance protection against SARS-CoV-2 variants, offering potent neutralizing activity against wild-type virus (WT), Beta variant (BV), Delta variant (DV) and some protection against the Omicron variant (OV). In addition, a booster mRNA vaccine results in a more potent immune response than inactivated vaccine regardless of which platform was used for prime doses

    Repurposing of Miltefosine as an Adjuvant for Influenza Vaccine

    No full text
    We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination. Survival, body weight, antibody response, histopathological changes, viral loads, cytokine levels, and T cell frequencies were compared. The MTF-adjuvanted vaccine (MTF-VAC) group had a significantly better survival rate than the vaccine-only (VAC) group, when administered 3 days (80% vs. 26.7%, p = 0.0063) or 7 days (96% vs. 65%, p = 0.0041) before influenza virus challenge. Lung damage was significantly ameliorated in the MTF-VAC group. Antibody response was significantly augmented in the MTF-VAC group against both homologous and heterologous influenza strains. There was a greater T follicular helper cell (TFH) response and an enhanced germinal center (GC) reaction in the MTF-VAC group. MTF-VAC also induced both TH1 and TH2 antigen-specific cytokine responses. MTF improved the efficacy of the influenza vaccine against homologous and heterologous viruses by improving the TFH and antibody responses. Miltefosine may also be used for other vaccines, including the upcoming vaccines for COVID-19
    corecore