111 research outputs found

    Expression profiling and integrative analysis of the CESA/CSL superfamily in rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cellulose synthase and cellulose synthase-like gene superfamily (<it>CESA</it>/<it>CSL</it>) is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (<it>Oryza sativa </it>L.) genome has been sequenced for a few years, the global expression profiling patterns and functions of the <it>OsCESA</it>/<it>CSL </it>superfamily remain largely unknown.</p> <p>Results</p> <p>A total of 45 identified members of <it>OsCESA</it>/<it>CSL </it>were classified into two clusters based on phylogeny and motif constitution. Duplication events contributed largely to the expansion of this superfamily, with Cluster I and II mainly attributed to tandem and segmental duplication, respectively. With microarray data of 33 tissue samples covering the entire life cycle of rice, fairly high <it>OsCESA </it>gene expression and rather variable <it>OsCSL </it>expression were observed. While some members from each <it>CSL </it>family (<it>A1</it>, <it>C9</it>, <it>D2</it>, <it>E1</it>, <it>F6 </it>and <it>H1</it>) were expressed in all tissues examined, many of <it>OsCSL </it>genes were expressed in specific tissues (stamen and radicles). The expression pattern of <it>OsCESA</it>/<it>CSL </it>and <it>OsBC1L </it>which extensively co-expressed with <it>OsCESA</it>/<it>CSL </it>can be divided into three major groups with ten subgroups, each showing a distinct co-expression in tissues representing typically distinct cell wall constitutions. In particular, <it>OsCESA1, -3 & -8 </it>and <it>OsCESA4, -7 & -9 </it>were strongly co-expressed in tissues typical of primary and secondary cell walls, suggesting that they form as a cellulose synthase complex; these results are similar to the findings in <it>Arabidopsis</it>. <it>OsCESA5</it>/<it>OsCESA6 </it>is likely partially redundant with <it>OsCESA3 </it>for OsCESA complex organization in the specific tissues (plumule and radicle). Moreover, the phylogenetic comparison in rice, <it>Arabidopsis </it>and other species can provide clues for the prediction of orthologous gene expression patterns.</p> <p>Conclusions</p> <p>The study characterized the <it>CESA</it>/<it>CSL </it>of rice using an integrated approach comprised of phylogeny, transcriptional profiling and co-expression analyses. These investigations revealed very useful clues on the major roles of <it>CESA</it>/<it>CSL</it>, their potentially functional complement and their associations for appropriate cell wall synthesis in higher plants.</p

    Comparative mapping of chalkiness components in rice using five populations across two environments

    Get PDF
    BACKGROUND: Chalkiness is a major constraint in rice production because it is one of the key factors determining grain quality (appearance, processing, milling, storing, eating, and cooking quality) and price. Its reduction is a major goal, and the primary purpose of this study was to dissect the genetic basis of grain chalkiness. Using five populations across two environments, we also sought to determine how many quantitative trait loci (QTL) can be consistently detected. We obtained an integrated genetic map using the data from five mapping populations and further confirmed the reliability of the identified QTL. RESULTS: A total of 79 QTL associated with six chalkiness traits (chalkiness rate, white core rate, white belly rate, chalkiness area, white core area, and white belly area) were mapped on 12 chromosomes using five populations (two doubled haploid lines and three recombinant inbred lines) across two environments (Hainan in 2004 and Wuhan in 2004). The final integrated map included 430 markers; 58.3% of the QTL clustered together (QTL clusters), 71.4% of the QTL clusters were identified in two or more populations, and 36.1% of the QTL were consistently detected in the two environments. The QTL could be detected again and showed dominance (qWBR1, qWBR8, qWBR12, and qCR5) or overdominance effects (qWCR7) for the rate of the white belly or white core, respectively, and all four QTL clusters derived from Zhenshan 97 controlling white belly rate were stably and reliably identified in an F(2) population. CONCLUSIONS: Our results identified 79 QTL associated with six chalkiness traits using five populations across two environments and yielded an integrated genetic map, indicating most of the QTL clustered together and could be detected in different backgrounds. The identified QTL were stable and reliable in the F(2) population, and they may facilitate our understanding of the QTL related to chalkiness traits in different populations and various environments, the relationships among the various chalkiness QTL, and the genetic basis for chalkiness. Thus, our results may be immediately used for map-based cloning of important QTL and in marker-assisted breeding to improve grain quality in rice breeding

    Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation

    Get PDF
    In recent years, the major factors that determine commercialization of perovskite photovoltaic technology have been shifting from solar cell performance to stability, reproducibility, device upscaling and the prevention of lead (Pb) leakage from the module over the device service life. Here we simulate a realistic scenario in which perovskite modules with different encapsulation methods are mechanically damaged by a hail impact (modified FM 44787 standard) and quantitatively measure the Pb leakage rates under a variety of weather conditions. We demonstrate that the encapsulation method based on an epoxy resin reduces the Pb leakage rate by a factor of 375 compared with the encapsulation method based on a glass cover with an ultraviolet-cured resin at the module edges. The greater Pb leakage reduction of the epoxy resin encapsulation is associated with its optimal self-healing characteristics under the operating conditions and with its increased mechanical strength. These findings strongly suggest that perovskite photovoltaic products can be deployed with minimal Pb leakage if appropriate encapsulation is employed

    Risk Factors of Postoperative Cerebrospinal Fluid Leak After Craniovertebral Junction Anomalies Surgery: A Case-Control Study

    Get PDF
    Objective To identify potential risk factors for cerebrospinal fluid (CSF) leakage after craniovertebral junction (CVJ) anomaly surgery and to provide a reference for clinical practice. Methods Sixty-six patients who underwent elective CVJ anomaly surgery during a 6-year period (April 2013 to September 2019) were retrospectively included. Research data were collected from the patients’ medical records and imaging systems. Patients were divided into CSF leak and no CSF leak groups. Univariate tests were performed to identify potential risk factors. For statistically significant variables in the univariate tests, a logistic regression test was used to identify independent risk factors for CSF leakage. Results The overall prevalence of CSF leakage was 13.64%. Univariate tests showed that a basion-dental interval (BDI) > 10 mm and occipitalized atlas had significant intergroup differences (p 10 mm was an independent risk factor for CSF leakage, and patients with CVJ anomalies with a BDI > 10 mm were more likely to have postoperative CSF leaks (odds ratio, 14.67; 95% confidence interval, 1.48–30.88; p = 0.004). Conclusion It is necessary to maintain vigilance during CVJ anomaly surgery in patients with a preoperative BDI > 10 mm to avoid postoperative CSF leaks

    USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency

    Get PDF
    The homeobox transcription factor Nanog has a vital role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). Stabilization of Nanog proteins is essential for ESCs. The ubiquitin–proteasome pathway mediated by E3 ubiquitin ligases and deubiquitylases is one of the key ways to regulate protein levels and functions. Although ubiquitylation of Nanog catalyzed by the ligase FBXW8 has been demonstrated, the deubiquitylase that maintains the protein levels of Nanog in ESCs yet to be defined. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a deubiquitylase for Nanog, but not for Oct4 or Sox2. USP21 interacts with Nanog protein in ESCs in vivo and in vitro. The C-terminal USP domain of USP21 and the C-domain of Nanog are responsible for this interaction. USP21 deubiquitylates the K48-type linkage of the ubiquitin chain of Nanog, stabilizing Nanog. USP21-mediated Nanog stabilization is enhanced in mouse ESCs and this stabilization is required to maintain the pluripotential state of the ESCs. Depletion of USP21 in mouse ESCs leads to Nanog degradation and ESC differentiation. Overall, our results demonstrate that USP21 maintains the stemness of mouse ESCs through deubiquitylating and stabilizing Nanog

    Soil chemistry, metabarcoding, and metabolome analyses reveal that a sugarcane—Dictyophora indusiata intercropping system can enhance soil health by reducing soil nitrogen loss

    Get PDF
    IntroductionGreater amounts of fertilizer are applied every year to meet the growing demand for food. Sugarcane is one of the important food sources for human beings.MethodsHere, we evaluated the effects of a sugarcane—Dictyophora indusiata (DI) intercropping system on soil health by conducting an experiment with three different treatments: (1) bagasse application (BAS process), (2) bagasse + DI (DIS process), and (3) the control (CK). We then analyzed soil chemistry, the diversity of soil bacteria and fungi, and the composition of metabolites to clarify the mechanism underlying the effects of this intercropping system on soil properties.Results and discussionSoil chemistry analyses revealed that the content of several soil nutrients such as nitrogen (N) and phosphorus (P) was higher in the BAS process than in the CK. In the DIS process, a large amount of soil P was consumed by DI. At the same time, the urease activity was inhibited, thus slowing down the loss of soil in the DI process, while the activity of other enzymes such as β-glucosidase and laccase was increased. It was also noticed that the content of lanthanum and calcium was higher in the BAS process than in the other treatments, and DI did not significantly alter the concentrations of these soil metal ions. Bacterial diversity was higher in the BAS process than in the other treatments, and fungal diversity was lower in the DIS process than in the other treatments. The soil metabolome analysis revealed that the abundance of carbohydrate metabolites was significantly lower in the BAS process than in the CK and the DIS process. The abundance of D(+)-talose was correlated with the content of soil nutrients. Path analysis revealed that the content of soil nutrients in the DIS process was mainly affected by fungi, bacteria, the soil metabolome, and soil enzyme activity. Our findings indicate that the sugarcane–DIS intercropping system can enhance soil health
    corecore